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Introduction 
Collaboration for research of RSF 

•  For better understanding of the radiative strength function the HZD ELBE, EK NAL and 
Charles Univ. groups initiated a collaboration in the framework of EFNUDAT and ERINDA 
to perform (n, γ) experiments on 1/2- ground state nuclei with mass A and (γ, γ’) 
experiments on A+1 (both have to be stable) 

–  In this case the capture state has 1- and 0- spin 
–  (γ, γ’) can excite mainly 1- states 
–  Unfortunately there are only two stable nuclei pairs with this feature 77-78Se and 195-196Pt 
–  There is another not so favored case for which the ground sate spin is 1/2+ 

–  This is the 113-114Cd pair, which is the subject of this talk 

•  Analysis of the first set of data  
–  on 77-78Se has been finished and is published in PRC  
–  on 195-196Pt has been finished and is published in PRC  
–  We concluded that it is possible to simulate the (n, γ) and (γ, γ’) experimental spectra with the same 

experimental RSF 
–  The TLO based RSF description successfully joins to the EGDR tail 

•  G. Schramm et al. PR C 85 014311 (2012), R. Massarczyk et al. PRC C 87, 044306 (2013) 
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Motivation 
•  In our collaboration with the ELBE group, calculations 

were applied using 100 keV bins for the whole energy 
range 

•  In case of radiative capture we can measure a large 
number of discrete gamma rays. 

• We have not yet considered a strict agreement for the 
well defined intensities below the critical number 

• This should be improved since the Berkeley group uses 
the low energy decay-schemes in their studies 
successfully. 

• For this reason the Budapest group started to improve 
the situation with so called high-energy resolution 
studies  

R.B. Firestone et al., LBNL 60966 report  (2007) 



The research infrastructure of BNC 
Budapest Neutron Centre (1993) 

NAA 

•  Nuclear analytical and imaging tools of MTA EK 
–  Prompt-gamma Activation Analysis (PGAA) (mm) 
–  PGAI-NORMA elemental and structural imaging ( 2 mm, 200  µm) 
–  Neutron-, gamma- and X-ray radiography (RAD) ( 100 µm) 
–  Neutron Activation Analysis (NAA) 
–  Mössbauer spectroscopy (chemical environment) 

•  Material microstructure tools of Wigner FK (not all listed) 
–  Neutron powder diffractometer (PSD, MTES ) (∼ 0.1 nm, 1Å) 
–  Small angle scattering (SANS, FSANS)  (1-150 nm ) 
–  Reflectometer (REF and GINA) ( nm surface structure) 
–  TOF diffractometer (TOF) (nm lattice distance) 
–  Triple Axis Spectrometer (Athos, TAST) (inelastic scattering) 

Macroscopic 
structure, 

composition 

Microscopic 
structure 
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Experiments 
at the Prompt Gamma Activation (PGA) facilities of the Budapest Neutron 

Centre (BNC) 

•  Targets 0.1 g of enriched 113Cd metal (90.2%) and 2.5 x 2.5 x 0.005 cm3, 
natural and 99.99% pure Cd sheet  

•  Cold neutron flux of 108 n/cm2/s collimated to 1-2 mm2 

•  Heavy lead shielded and BGO guarded HPGe γ-detector at 90 degree relative 
to the beam 

•  Compton suppressed and normal singles acquired for about 5 days 
•  Detector efficiency measured with calibration standards and 14N(n,γ)15N 

reactions 
•  Simulated response functions with GEANT 4 code 

workplace 

PGAA NIPS (NORMA) 
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Unfolding normal spectra 

• Node spectra and list mode were calculated using GEANT4 
 from 250 keV to 11 MeV with steps of 250 keV and with 1 
 keV binning  

• The calculation time was about 60 days of CPU time I5 proc. 
• Further treatment is according to Oslo description 

• Full spectra were normalized to 1 
• Full energy, SE, DE and Annihilation peaks were  
 removed and stored separately for later use 

•  Interpolation were calculated using the scattering 
 angular space rather than the energy space 

•  Interpolation of peak heights were obtained from 
 Cardinal spline interpolations 

• Above Compton edge stretching and constriction were 
 used 

M. Guttormsen et al., Nuclear Instruments and Methods in Physics Research A 374 (1996) 371-376 
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Node spectra 
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Unfolding of Urea-D capture spectrum 
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Unfolding of enriched 113Cd(n,γ) spectrum 

Measured (red), unfolded (blue) 
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Efficiency corrected 113Cd(n,γ) spectrum 

Inv-Q value 21640 b, literature 20600(400) b, multiplicity 4.1 
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BIn Type Statisticall code for Gamma-decay (GBITS) 
 software in VBA 

Input  
parameters of the problem & discrete levels 

Setup 
discrete & quasi-continuous decay-scheme 

Calculation 
decay branching matrix (DBM) from strength 

function & level density 

Calculation  
single and  two-step spectra, and incoming and 

outgoing intensity balances for levels 

Outputs  
Graphics and tables 

Easily  editable  
discrete decay-scheme 
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Features of GBITS software  
& parameterization for the simulation of 113Cd(n,γ) decay 

• RIPL-3 decay scheme input 
• Level densities : CTM & BSFG 
• E1 strength function: Triple Lorentzian (TLO), MLO1, EGLO, soft-pole, 
pigmy resonance 

• M1 strength function: SLO, TLO 
• E2: SLO Global parameterization from RIPL1 
• Conversion electron contribution 
Red is: strength functions used in 113Cd(n,g)114Cd simulations 
 
CTM parameters are: T=0.65 MeV, E0=0.25 MeV in agreement with 
Massarczyk et al. in preparation 

For the level density the odd-even staggering as described by von Egidy 
is used at the Bn 

TLO is parameterized as prescribed by Massarczyk at al. in preparation 
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Level density & strength functions  
parameterization for the simulation of 113Cd(n,γ) decay 

Critical level number 

T=0.65 MeV 
E0=0.25 MeV 

β=0.2, γ=27o 
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Low resolution model for the 
113Cd(n,γ) spectrum  
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Outgoing intensity matrix as a function of 
energy bins and spin for 113Cd(n,γ) 
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Energy spectra arrising from each shown 
bins and the sums of all bins 

Anton Tonchev: Sweet point 
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High resolution model for the (n,γ) 
spectrum  
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The decay-scheme has been changed to improve the 
agreement for the low energy spectrum 

New decay-scheme Old  decay-scheme ENSDF 2007
I Ei Ji Pi I Ei Ji Pi

1 0 0 1 1 0 0 1
2 0.558456 2 1 2 0.558456 2 1
3 1.13453 0 1 3 1.13453 0 1
4 1.20971 2 1 4 1.20971 2 1
5 1.28374 4 1 5 1.28374 4 1
6 1.30561 0 1 6 1.30561 0 1
7 1.36434 2 1 7 1.36434 2 1
8 1.73225 4 1 8 1.73225 4 1

9 1.784 2 1
9 1.84195 2 1 10 1.84195 2 1

10 1.8597 0 1 11 1.8597 0 1
11 1.86426 3 1 12 1.86426 3 1
12 1.93208 4 1 13 1.93208 4 1
13 1.95809 3 -1 14 1.95809 3 -1
14 1.9903 6 1 15 1.9903 6 1
15 2.04803 2 1 16 2.04803 2 1
16 2.15227 3 1 17 2.15227 3 1
17 2.20456 3 1 18 2.20456 3 1
18 2.21886 2 1 19 2.21886 2 1
19 2.29893 5 -1 20 2.29893 5 -1
20 2.3171 4 1 21 2.3171 2 1
21 2.38476 3 -1 22 2.38476 3 -1
22 2.3873 3 -1 23 2.3873 3 -1
23 2.3915 4 1 24 2.3915 4 1
24 2.398 2 1
25 2.4002 6 1 25 2.4002 6 1
26 2.4125 6 -1 26 2.4125 6 -1
27 2.43764 0 1 27 2.43764 0 1
28 2.456 1 -1 28 2.456 1 -1
29 2.46076 4 -1 29 2.46076 4 -1

30 2.4652 2 -1
30 2.5026 2 1 31 2.5026 2 1
31 2.52542 2 1 32 2.52542 2 1
32 2.53581 5 -1 33 2.53581 5 -1
33 2.542 2 1
34 2.55387 0 1 34 2.55387 0 1
35 2.58036 2 -1 35 2.58036 2 -1
36 2.63652 0 1 36 2.63652 0 1
37 2.65012 2 1 37 2.65012 2 1
38 2.658 1 -1 38 2.6609 2 1
39 2.6693 8 1 39 2.6693 8 1
40 2.70107 3 1 40 2.70107 3 1

41 2.7352 7 -1
41 2.74926 2 1 42 2.74926 2 1
42 2.75692 3 -1 43 2.75692 3 -1
43 2.76785 1 -1 44 2.76785 1 -1
44 2.7885 2 1 45 2.7885 1 1
45 2.79999 2 1 46 2.79999 2 1
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Effect of new and old decay-schemes  

Updating the decay-scheme is important and yields are very sensitive for the 
spin and parity 
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Effect of soft-pole on decay-schemes  
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Effect of soft-pole on decay-schemes  
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Effect of soft-pole on decay-schemes  
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Summary  

• Modeling of Budapest detector response reached an 
 acceptable accuracy 

• Unfolding normal spectra follows the Oslo method 
• A new software has been developed to study the statistical 

modelling in high resolution  
• Preliminary results were shown 
• The decay-scheme of 114Cd were changed to improve 

agreement with the observed data 
• A lot more work is needed to obtain better agreement 
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Thanks for your attention!  
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Works remained 
(Jyväskylä) 

• Modeling of Budapest detector response needs 
more work   

• Unfolding of Budapest spectra is to be done 
• Total capture Xsection at thermal energy  
• Combined evaluation and modeling of have to be 

done 
• Expected outcome is better understanding of the 

role of M1 and E1 transitions and their strength 
function 
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Modeling of Budapest detector response  
More works were done on the quality of modeling 
Below 400 keV we still have discrepancies 
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)  
Modeling of Budapest detector response  
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)  
Modeling of Budapest detector response  

•  HPGe geometry was further adjusted slightly to describe the normal mode 
•  List mode acquisition of Monte Carlo total energy in the sensitive volumes (HPGe, BGO-main, 

 catcher) 
•  From the calculation we realized that the catcher is not really working 
•  Special energy dependent BGO efficiency was introduced to describe the main BGO 

 coincidence efficiency of Compton-suppression 
•  There are still discrepancies at lower energies which do not depend on the 

 Compton-suppression 
•  Compton-suppression is less tested than normal mode thus more uncertain 

Co-60 1173 keV
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Node spectra 
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Interpolation and calculated GEANT4 
spectra  
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Unfolding of Co-60 spectrum 
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Unfolding of Eu-152 spectrum 

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0 200 400 600 800 1000 1200 1400 1600

E keV

P
ro

ba
bi

lit
y


