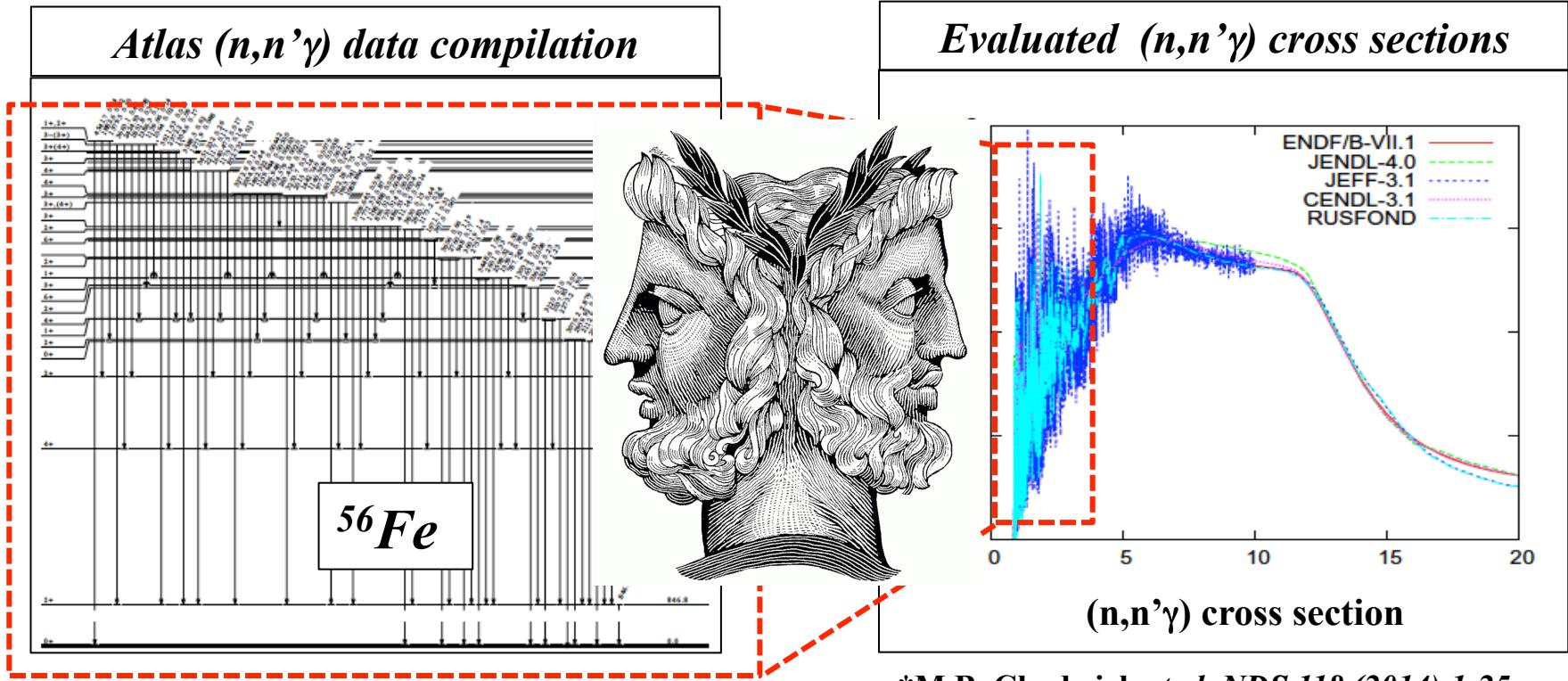


Inelastic Neutron Scattering: from Baghdad to Berkeley (aka Lee's talk)

L.A. Bernstein

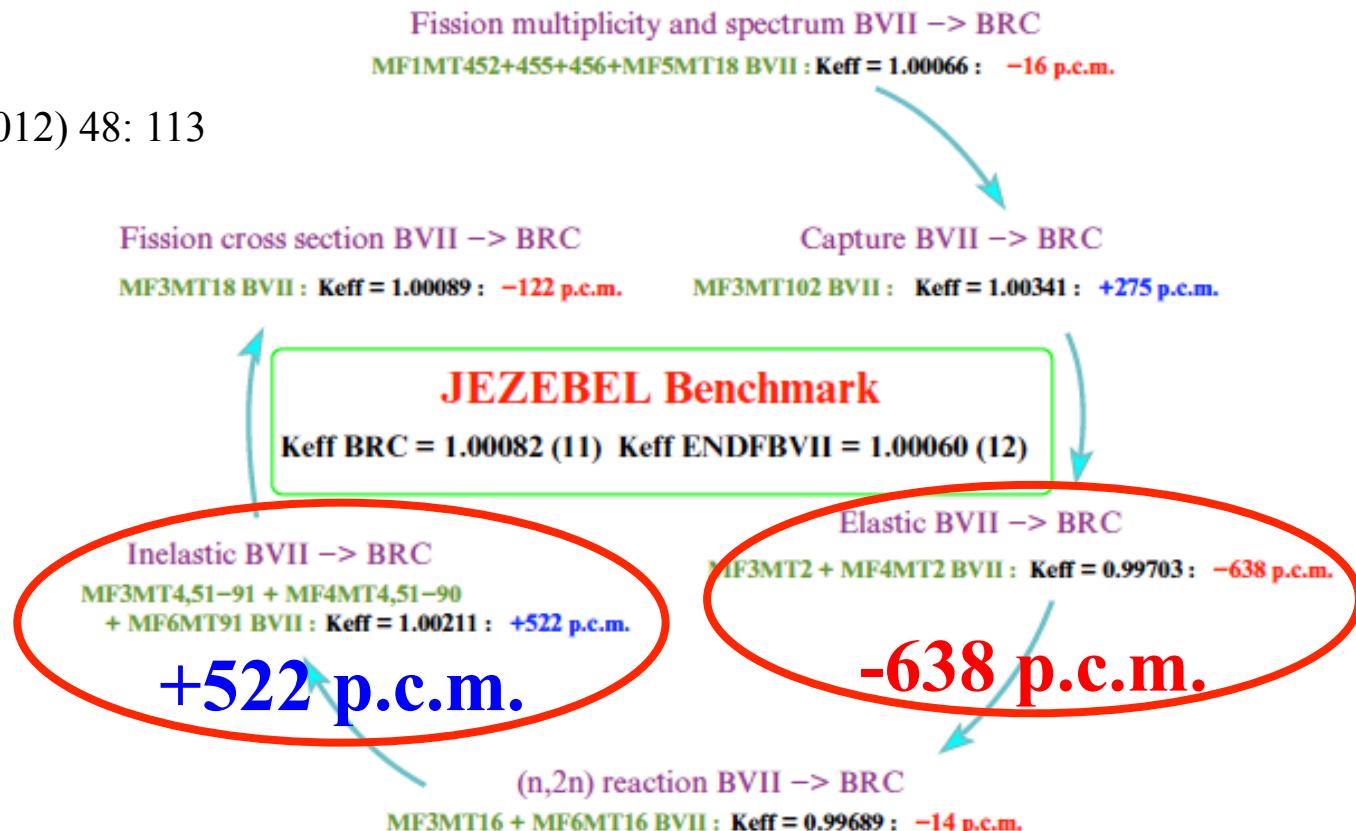

5th Workshop on Nuclear Level Density and Gamma Strength
University of Oslo, Norway
May 19, 2015

LLNL-PRES-pending

**This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344 and Lawrence Berkeley National Laboratory
under contract # DE-AC02-05CH11231.**

Lawrence Livermore National Laboratory

$(n, n'\gamma)$, like RSF, sits at the intersection of structure and reactions



*M.B. Chadwick *et al.* NDS 118 (2014) 1-25

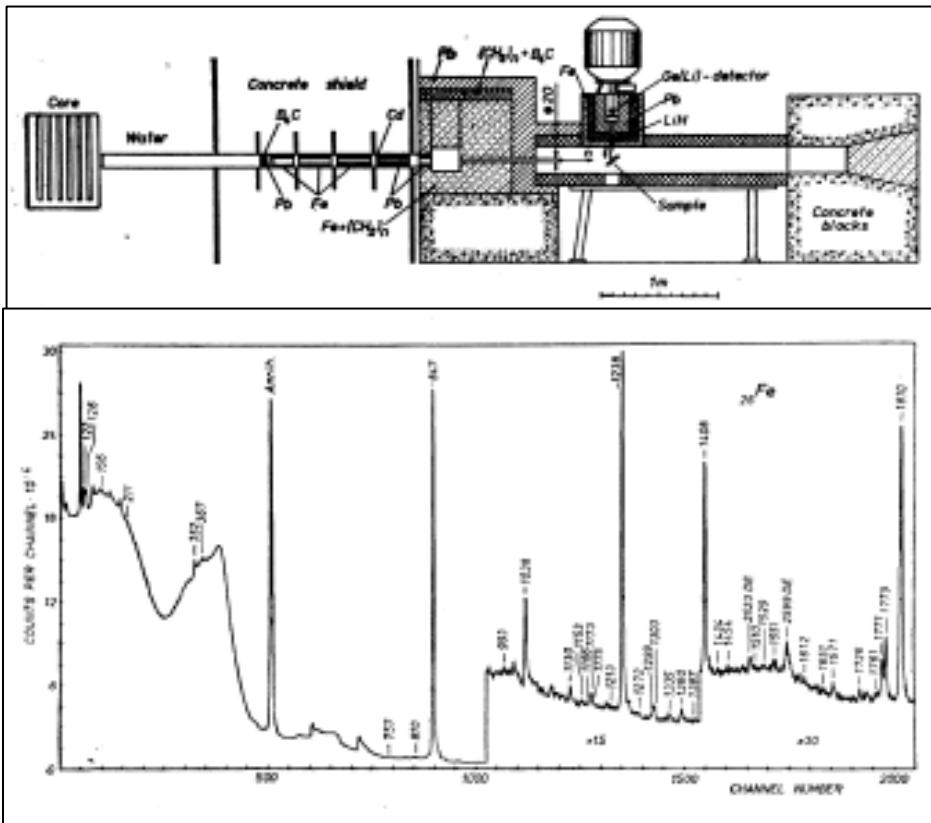
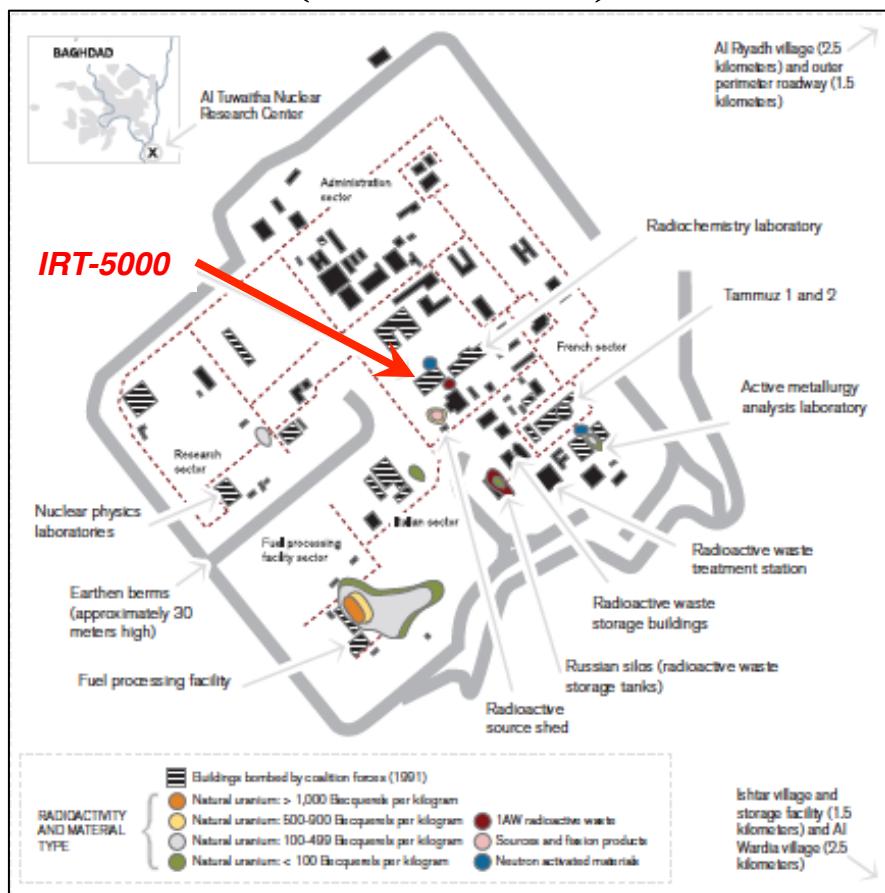
(n, n') for $E_n < 10 \text{ MeV}$ is very sensitive to low-lying nuclear structure and most of these cross sections remain unmeasured!

Bauge* highlighted the uncertainty in reaction databases for (n,n_{el}) and (n,n') in a prompt fission neutron spectrum

*E. Bauge *et al.*,
Eur. Phys. J. A (2012) 48: 113

Other calls for (n,n'γ) data:

“Below 2 MeV differences in $^{56}\text{Fe}(n,n'\gamma)$ are 28%”*



“New measurements (in ^{56}Fe) have been requested between 0.5-20 MeV” **

*M.B. Chadwick *et al.* NDS 118 (2014) 1-25

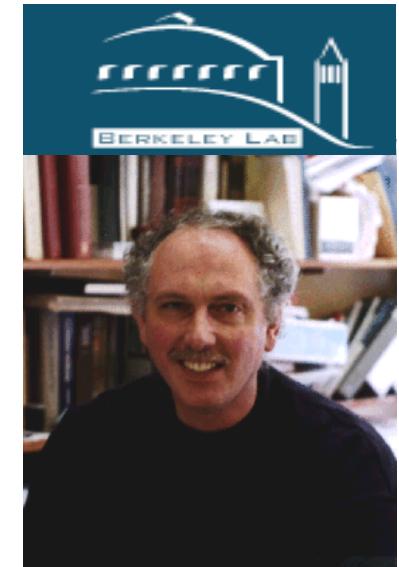
**<http://www.oecd-nea.org/dbdata/hprl/hprlview.pl?ID=454>

The most comprehensive collection of $(n, n'\gamma)$ data was taken at the IRT-5000 reactor at the Al-Tuwaitha Nuclear Research Facility

Baghdad Nuclear Research Facility (Al-Tuwaitha)

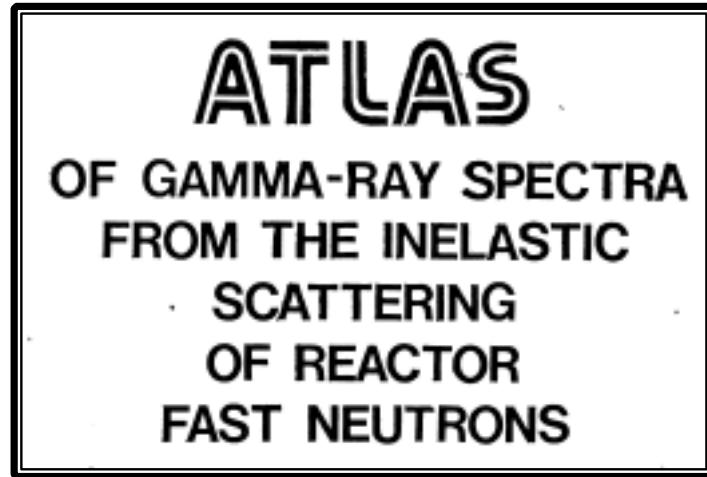
The same set-up was used for all measurements → *consistency*

Unfortunately, the facility was “decommissioned” by the US Air Force in 1991...



...and the IAEA is cleaning up the mess...

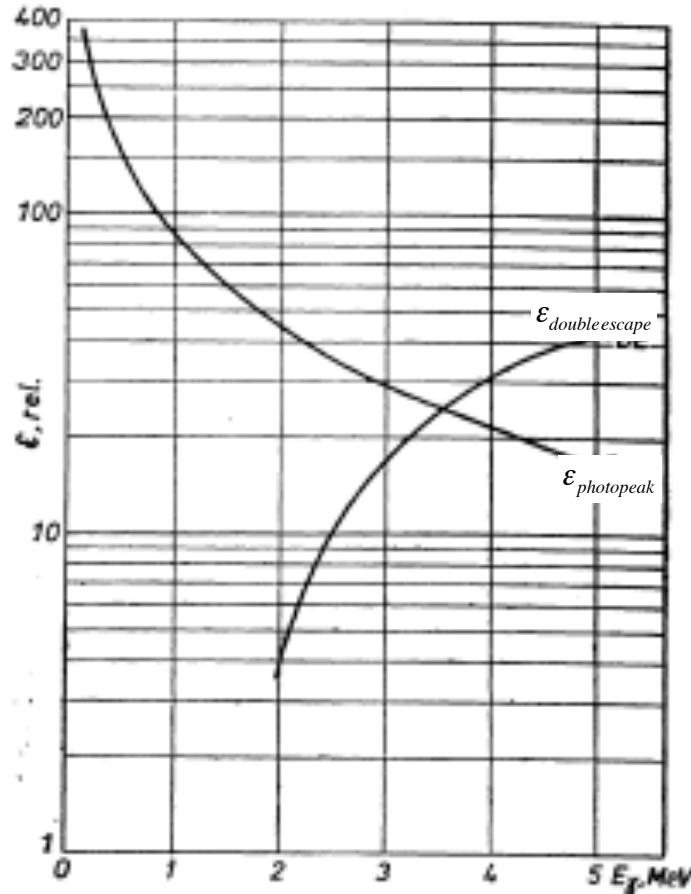
Fortunately,
Andrej Trkov
had a copy...


...that he sent to
Rick...

...that he sent on to Brad Sleaford,
Aaron Hurst and me

The data was released in the “Baghdad Atlas” (1978DE41) by *Demidov, Govor, Ahmed et al.*,

Level scheme of ^{56}Fe [68Gn, 70Ra5, 74La, 74Tl]							
E_T	E_T^0	J_T^0	E_T	J_T	E_T	J_T^0	P_T
846.79	846.8	2+	846.78	100	0	0+	68
2085.1(3)	2085.1	4+	1238.3	10.5	846.8	2+	5.3
2657.5(2)	2657.6	2+	2658.3	0.14	0	0+	6.4
			1810.5	6.9	846.8	2+	
2941.4(2)	2941.7	0+	2094.6	1.08	846.8	2+	1.1
2959.7(2)	2960.0	2+	2959.6	—	0	0+	3.3*
			2112.9	3.2	846.8	2+	
3120.0(2)	3120.0	1+	2273.2	2.03	846.8	2+	2.0
3122.9(3)	3123.0	4+	1037.85	2.15	2085.1	4+	1.8
3370.0(2)	3370.2	2+	3369.2	0.24	0	0+	1.5
			3223.2	1.28	846.8	2+	
3388.3(4)	3388.1	6+	1303.2	0.64	2085.1	4+	0.64
3445.37	3445.4	3+	2598.52	2.6	846.8	2+	3.0
			1339.9	0.40	2085.1	4+	
3448.7(4)	3449.3	1+	3448.6	1.13	0	0+	1.1
3602.0(3)	3601.9	2+	3601.9	1.5	0	0+	1.5
3605.9(3)	3607.0	0+	2760.0	1.24	846.8	2+	1.2
3756.2(6)	3755	6+	1671.1	0.32	2085.1	4+	0.32


Atlas Specifics

- 7090 γ -rays
- 105 targets, 75 elements
 - Separated Isotopes: Mo, Pd, Cd, Sn, Te, Sm, Dy, W
- Absolute γ -ray yields normalized to the ^{56}Fe 2 \rightarrow 0 @ 847 keV

Iron								^{56}Fe
E_T	r_T	A_Z	E_T	E_T	r_T	A_Z	E_T	
122.1(2)	2.2(2)	^{56}Fe	122.1	1165.9(6)	0.08(3)			
126.0(2)	1.6(2)	^{55}Mn	126.0	1173.2(8)	0.25(10)	^{56}Fe	3800.6	
156.5(2)	0.40(10)	^{54}Mn	156.5	1175.0(8)	0.15(10)	^{56}Fe	4297.4	
211.0(3)	0.22(3)	^{53}Mn	211.0	1213.0(7)	0.06(3)			
352.5c	1.6(3)	^{51}Fe	367.0	1238.3(2)	10.5(5)	^{56}Fe	2085.1	
367.1(2)	0.54(5)	^{50}Fe	367.0	1271.9(10)	0.05(2)	^{56}Fe	4385.4	
757.3(4)	0.10(3)	^{48}Fe	757.3	1298.9(4)	0.12(4)			
810.3(2)	0.45(3)	^{47}Fe	810.3	1303.2(3)	0.64(10)	^{56}Fe	3388.3	
846.78c	100	^{46}Fe	846.8	1334.6(4)	0.18(3)	^{56}Fe	4457.6	
902.3(4)	0.10(3)			1359.9(3)	0.40(4)	^{56}Fe	3445.4	
1037.85c	2.15(10)	^{45}Fe	3122.9	1385.6(10)	0.06(3)			
1130.0(3)	0.39(4)	^{44}Fe	2538.2	1408.2(2)	3.5(2)	^{56}Fe	1408.2	
1152.8(4)	0.14(3)	^{43}Fe	2561.0	1434.2(10)	0.05(2)			

The “Baghdad Atlas” included information about the target irradiation time and sample sizes to provide

Element	Sample	Mass, g	Exposition, h	E_T	A_Z	$I_T(Fe)$, %
O	$Y(NO_3)_3 \cdot 6H_2O$	28.3	22.0	1983	^{18}O	0.11 (4)
F	^{19}LiF	11.1	22.6	1236	^{19}F	5.9 (7)
Na	NaOH	22.5	22.0	440	^{22}Na	139 (28)
Mg	Mg	7.9	24.7	1369	^{24}Mg	28 (3)
Al	Al	11.0	14.1	1014	^{27}Al	28 (3)
Si	Si	13.0	37.2	1779	^{28}Si	27.0 (25)
P	P_2O_5	13.2	21.3	1266	^{31}P	21 (3)
S	S	23.7	14.3	2230	^{32}S	15.1 (20)
Cl	$CaCl_2$	7.0	22.0	1220	^{35}Cl	5.2 (5)
K	KOH	24.0	25.5	2814	^{39}K	2.6 (4)
Ca	Ca	11.3	24.2	3904	^{40}Ca	2.2 (4)
Sc	Sc + Sc_2O_3	6.4+6.0	24.0	364	^{45}Sc	28 (4)
Ti	Ti	24.5	13.5	983	^{48}Ti	77 (8)
V	V_2O_5	14.2	22.9	320	^{51}V	115 (16)
Cr	Cr	23.5	24.8	1434	^{52}Cr	52 (6)
Mn	MnO_2	32.8	24.7	858	^{55}Mn	16.8 (18)
Fe	Fe_2O_3	17.4	8.0	847	^{56}Fe	100

ϵ_{det} and target thickness info was provided to allow γ -yield normalization to the ^{56}Fe 2 \rightarrow 0 @ 847 keV

The non-proliferation community at LLNL started the process of compiling the Atlas

The Atlas was scanned and OCR-ed (Sleaford)

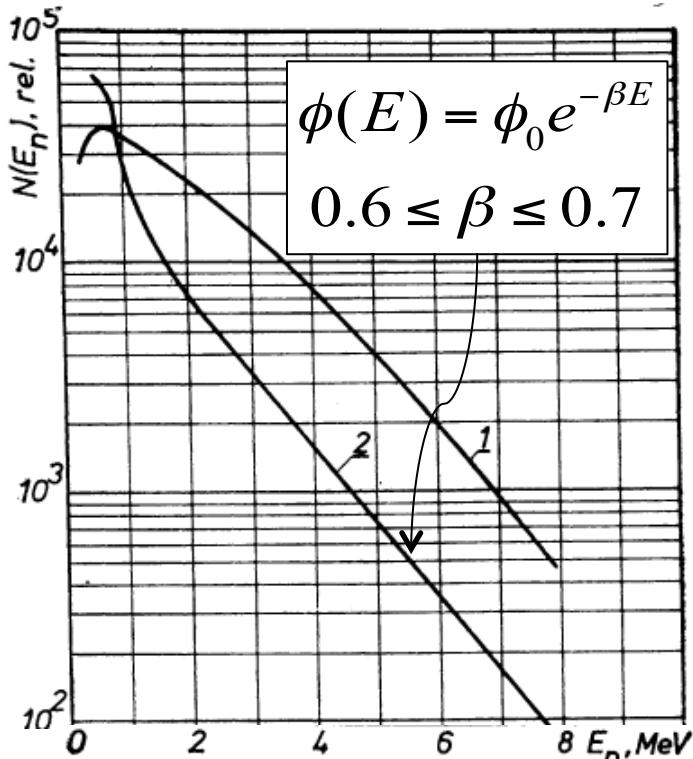
$E\gamma$	$I\gamma$	Az	Ei	Az	Ei	Eai	$J\pi i$	$E\gamma$	$I\gamma$	Ef	$J\pi f$	Ps
Boron												
5B												
Level schemes of 10B [66La] and 11B [68Aj, 71Br]												
477.7 (2)	1048 (50)	7Li	478	10B	718.21 (15)	717	1+	718	38	0	3+	27
718.18 (15)	38 (8)	10B	718		1739.6 (4)	1740	0+	1021	5	718	1+	1.6*
1021.4 (3)	4.7 (7)	10B	1740		2154.9 (6)	2154	1+	2155	1	0	3+	4.3*
1436.5 (5)	1.6 (4)	10B	2155					1437	2	718	1+	
2124.0 (3)	100	11B	2124		3585.9 (10)	3585	2+	2867	4	718	1+	7.4*
2155.0 (6)	1.1 (4)	10B	2155	11B	2124.3 (3)	2124	1/2-	2124	100	0	3/2-	95
2867.3 (8)	4.2 (8)	10B	3586		4443.2 (9)	4444	5/2-	4442	38	0	3/2-	38
2895.1 (8)	4.6 (8)	11B	5020		5019.8 (11)	5021	3/2-	5018	18	0	3/2-	23
4442.2 (9)	38 (8)	11B	4443					2895	5	2124	1/2-	
5018.4 (12)	18 (3)	11B	5020									

Data was converted into an excel spreadsheet and normalized to the 847 keV ^{56}Fe line (Walston)

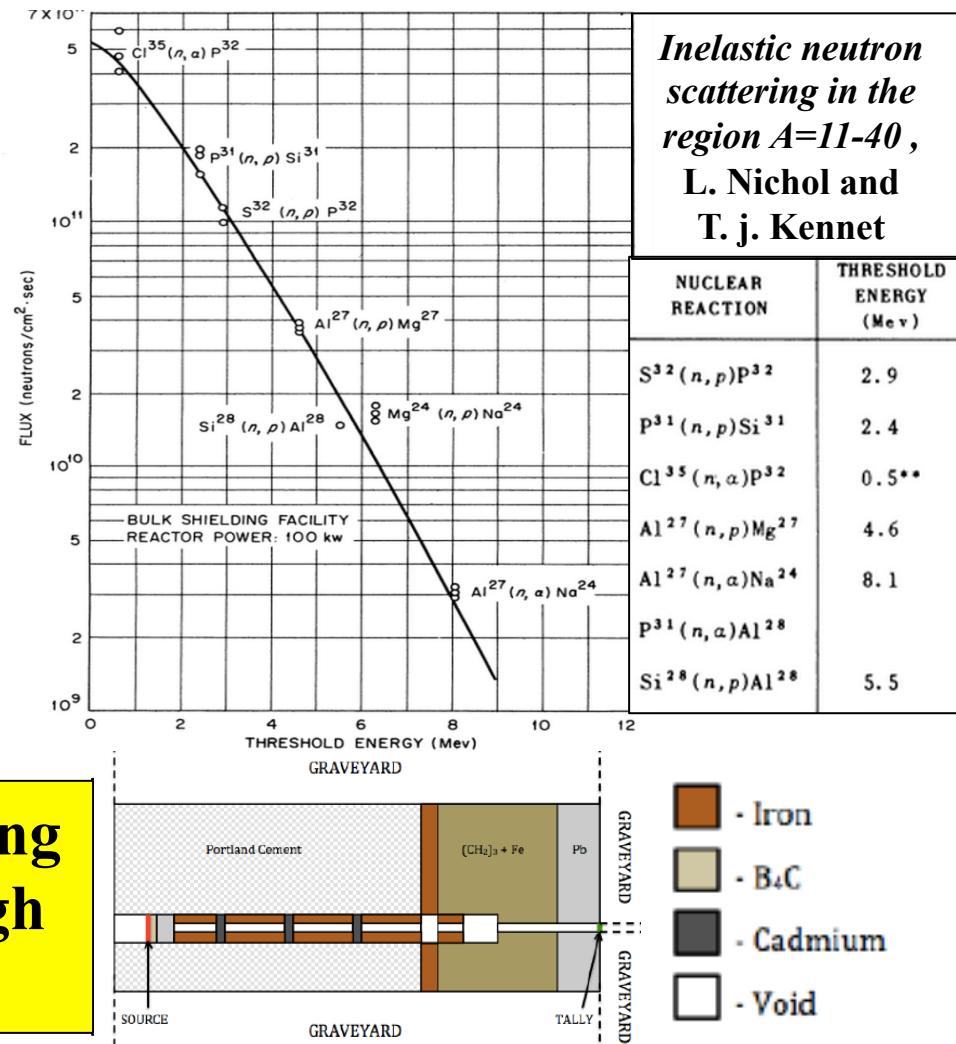
	A	B	C	D	E	G	I	M	R	S
	$E\gamma$ (keV)	$I\gamma$	Az	E_i (keV)	$E\gamma$ (keV)	$E\gamma$ error (keV)	$I\gamma$ (%)	$I\gamma$ (Fe) (%)	$\sigma_{\gamma\gamma\gamma}$ (mb)	Error on $\sigma_{\gamma\gamma\gamma}$ (mb)
625 Iron										
626	122.1(2)	2.2(2)	57Fe	122.1	122.1		0.2	2.2		10.296
627	126.0(2)	1.6(2)	55Mn	126	126.0		0.2	1.6		7.488
628	156.5(2)	0.40(10)	54Mn	156.5	156.5		0.2	0.40		1.872
629	211.0(3)	0.22(3)	56Mn	211	211.0		0.3	0.22		1.0296
630	352.5c	1.6(2)	57Fe	367	352.5			1.6		7.488
631	367.1(2)	0.54(5)	57Fe	367	367.1		0.2	0.54		2.5272
632	757.3(4)	0.10(3)	53Fe	757.3	757.3		0.4	0.10		0.468
633	810.3(2)	0.43(3)	58Fe	810.3	810.3		0.2	0.43		2.0124
634	846.78c	100	56Fe	846.8	846.78		100	100		468
635	992.8(4)	0.10(3)			992.8		0.4	0.10		0.468
636	1037.85c	2.15(10)	56Fe	3122.9	1037.85		2.15	0.01,"")		0.468
637	1130.0(3)	0.39(4)	54Fe	2538.2	1130.0		0.3	0.39		1.8252
638	1152.8(4)	0.14(3)	54Fe	2561	1152.8		0.4	0.14		0.6552

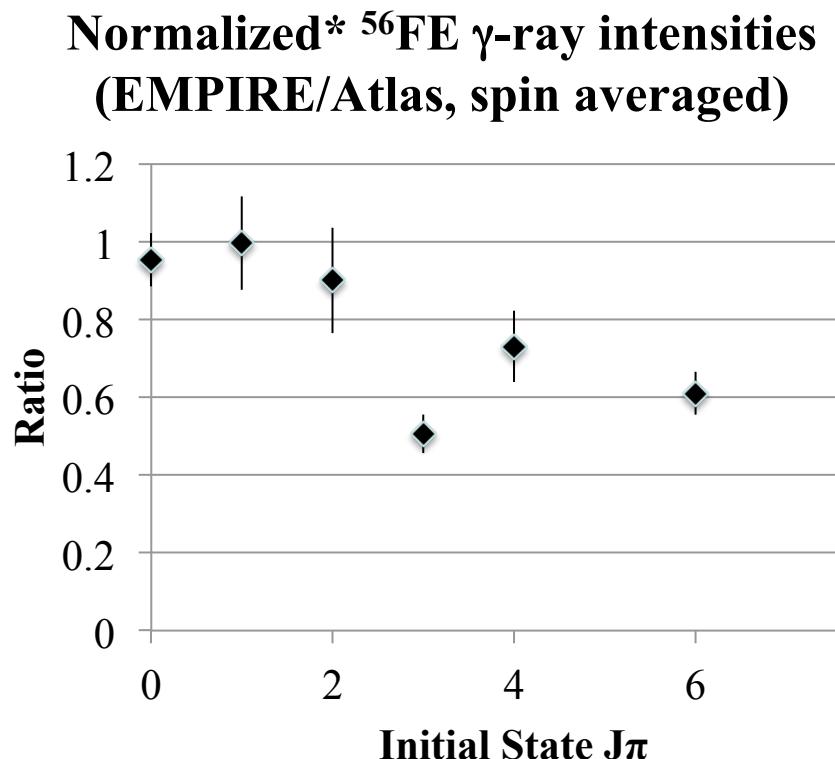
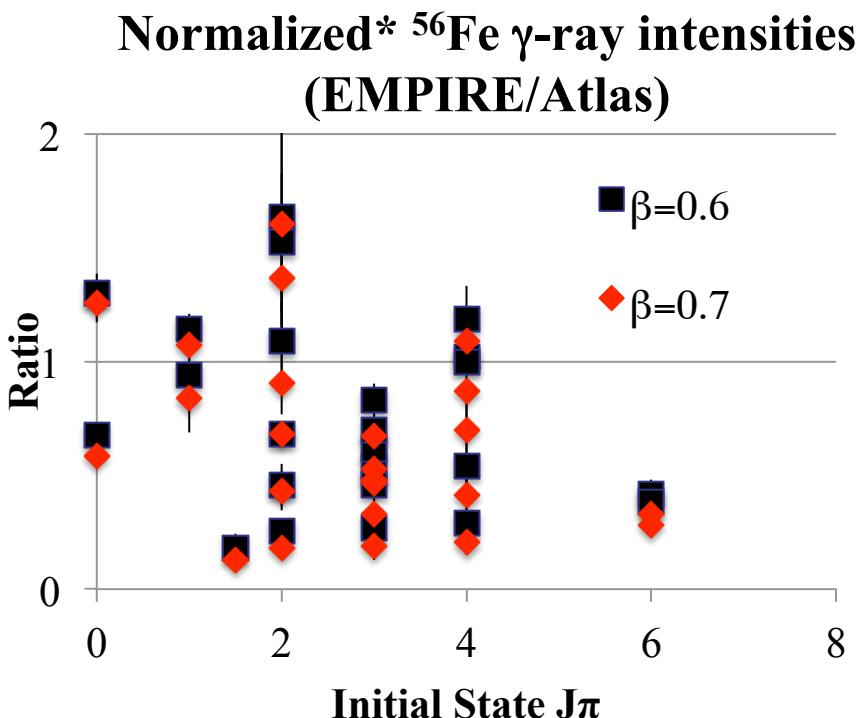
The data can be easily converted to ENSDF format using xls2ens

Aaron Hurst translated the Atlas into an SQL database


Screenshot of a database management system (DBMS) interface showing the 'atlas_baghdad.db' database. The 'atlas' table is selected, displaying data for 7345 rows. The table structure includes columns: id, nuc_symb, nuc_Z, energ..., d_ene..., intens..., d_inte..., transi..., comp..., energ..., and sample.

id	nuc_symb	nuc_Z	energ...	d_ene...	intens...	d_inte...	transi...	comp...	energ...	sample
1	Li	3	478.4	0.3	100	0	f	7Li	478.4	N
2	B	5	477.7	0.2	1048	50	f	7Li	477.7	N
3	B	5	718.18	0.15	38	8	f	10B	718.2	N
4	B	5	1021.4	0.3	4.7	0.7	f	10B	1739.8	N
5	B	5	1436.5	0.5	1.6	0.4	f	10B	2154.9	N
6	B	5	2124	0.3	100	0	f	11B	2124.3	N
7	B	5	2155	0.6	1.1	0.4	f	10B	2154.9	N
8	B	5	2867.3	0.8	4.2	0.8	f	10B	3585.9	N
9	B	5	2895.1	0.8	4.6	0.8	f	11B	5019.8	N
10	B	5	4442.2	0.9	38	8	f	11B	4443.2	N
11	B	5	5018.4	1.2	18	3	f	11B	5019.8	N
12	C	6	4438	2	109	0	f	12C	4438.91	N
13	N	7	729.6	0.5	12	2	f	14N	5834.2	N
14	N	7	1634.6	0.3	67	5	f	14N	3947.7	N
15	N	7	2312.8	0.3	100	0	f	14N	2313	N
16	N	7	2792.5	2	5.7	1.6	f	14N	5105.6	N
17	N	7	3384	3	11	2	f	14N	5697	N
18	N	7	3949.9	2.5	3.6	2	f	14N	3947.7	N
19	N	7	5104.6	0.8	22	5	f	14N	5105.6	N
20	O	8	1983	0.4	100	0	f	18O	1983.1	N
21	O	8	6129.3	1	595	120	f	16O	6130.6	N
22	F	9	197.1	0.2	2700	200	f	19F	197.1	N
??										


- GUI can be used to manipulate data or execute SQL code
- All γ -ray information from the ATLAS entered.



The energy dependence of the reactor neutron flux ($\Phi_\nu(E_\nu)$) is based on a set of activation measurements

Neutron transport is being modeled by R. Slaybaugh and students @ UC

Modeling of the partial γ -ray cross sections using EMPIRE and TALYS (I. Abramovic) show little sensitivity to $\Phi_\nu(E_\nu)$

Deviations between the Atlas and EMPIRE can be used to point to deficiencies in the low-lying off-yrast structure, $\rho(J)$ etc.

*All γ -rays normalized to the yrast $2^+ \rightarrow 0^+$

Demidov *et al.*, recognized the value of (n,n'γ) as a tool for nuclear structure studies (2004DE49)

Physics of Atomic Nuclei, Vol. 67, No. 10, 2004, pp. 1884–1891. Translated from *Yadernaya Fizika*, Vol. 67, No. 10, 2004, pp. 1908–1915.
Original Russian Text Copyright © 2004 by Demidov, Govor, Kurkin, Mikhailov.

NUCLEI

PHYSICAL REVIEW C 81, 037304 (2010)

Employing
Intr

First 3⁻ excited state of ^{56}Fe

aneously
 ^{6}Fe

N. Fotiades,* R. O. Nelson, and M. Devlin

Russian R Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 32 Russia

(Received 4 February 2010; published 31 March 2010)

Abstract—Reactions of the (n,ny) type proceed through a compound-nucleus stage; therefore, the excitation cross section is usually independent of the level nature. Accordingly, all of the excited states must manifest themselves in such reactions through γ transitions (with allowance for their internal conversion). *In comparing the energy-level and γ-transition diagrams obtained in investigating γ rays from the inelastic scattering of fast reactor neutrons with the diagrams published in the last issues of Nuclear Data Sheets, it was found that 120 levels in 34 nuclei must be excluded from compiled data because the γ transitions expected from them were not observed.* The case of the questionable first 3⁻ level in ^{56}Fe at 3076 keV is considered by way of example. It is concluded that there is no such level in ^{56}Fe .

Let's examine one of these cases – ^{110}Cd

Table 1. List of excluded levels

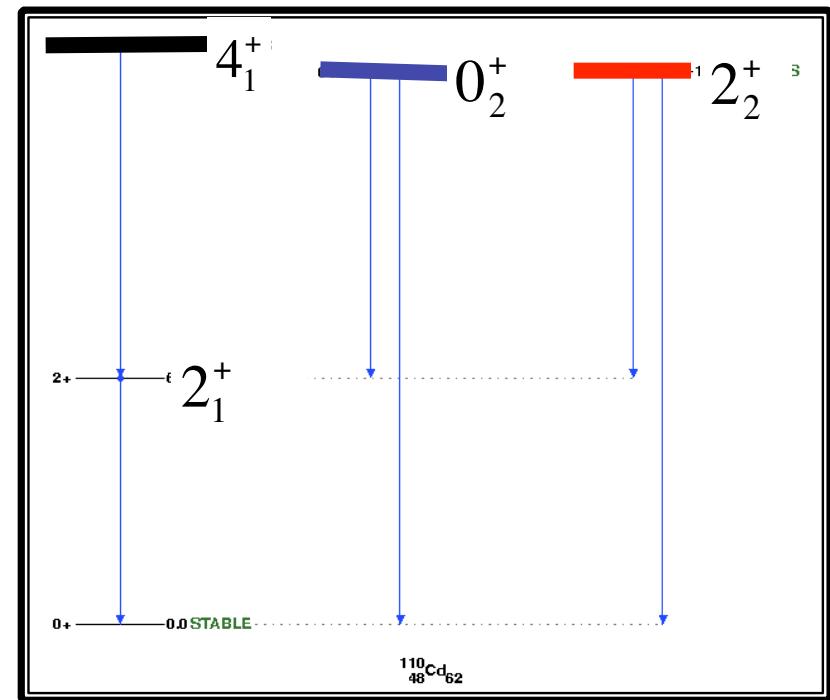
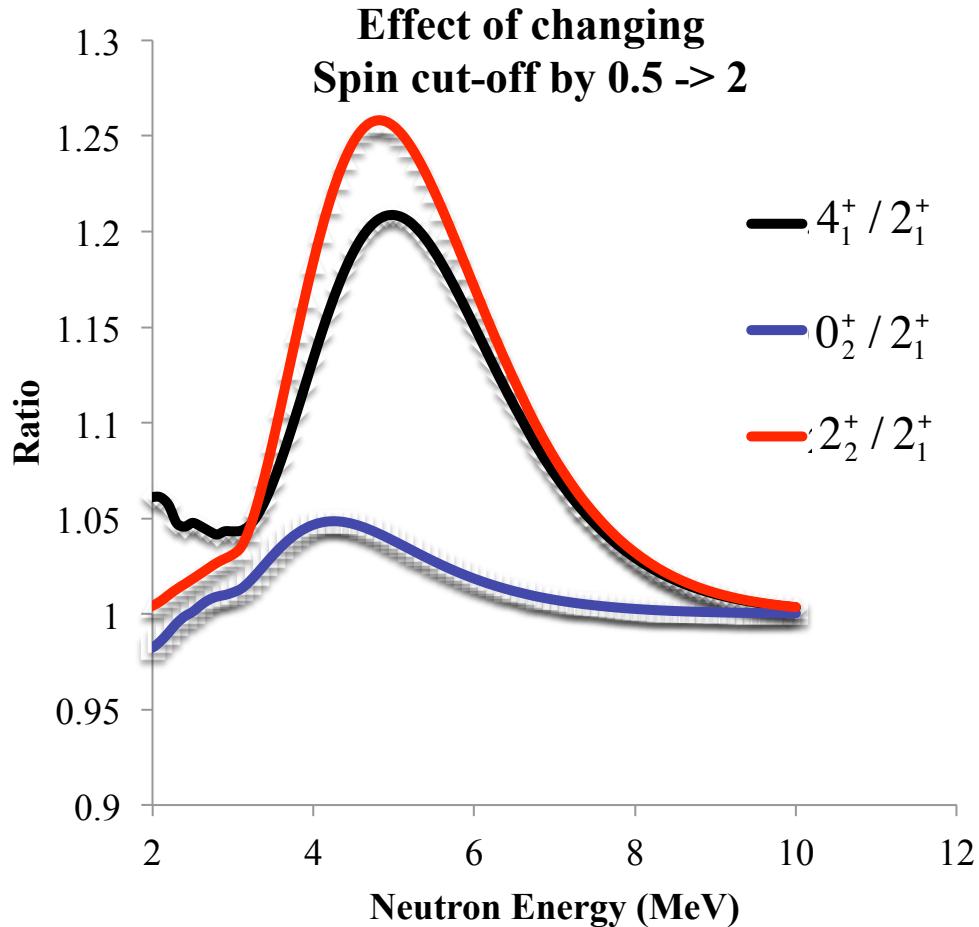
Isotope	Level, keV (from NDS)	J^π (from NDS)	References	
			$(n, n'\gamma)$	NDS
^{104}Pd	1941.2(5)	(1, 2)	[6]	[7]
	1999.1(4)			
	2125.5(1)			
^{106}Pd	1904.31(10)	$2^-, 3^-$	[6]	[8]
^{106}Cd	2338.55(21)	(4^+)	[9]	[8]
	2521.9(3)	$(4, 5^+)$		
^{110}Cd	1809.484(18)	(2^+)	[10]	[11]
	2000			
	2184(2)	(1^-)		
	2198(2)	$2^+, 3^+$		
	2365(2)	2^+		
	2377(2)	4^+		
	2381(2)			
	2385(2)	(2^+)		
	2405(2)	$(0^+, 2^-)$		
	2432(2)	2^+		
	2433.25 3			
	2451(2)			

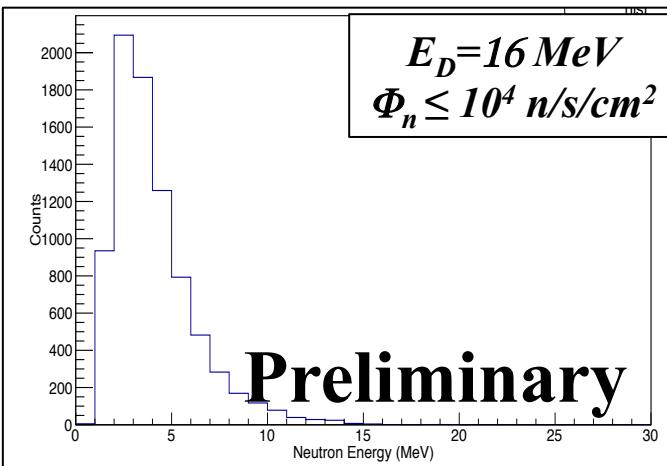
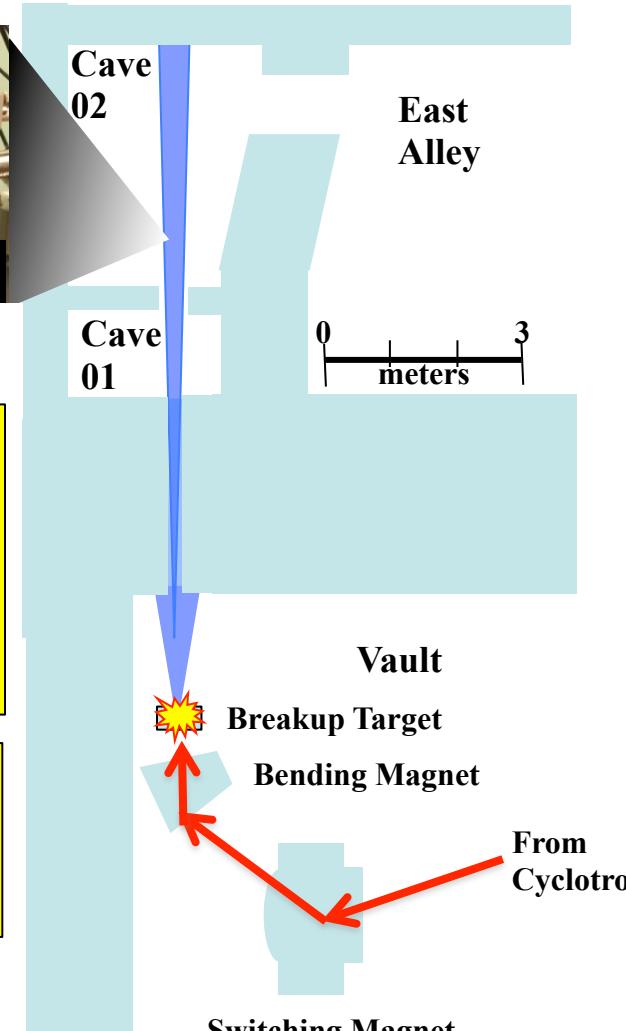
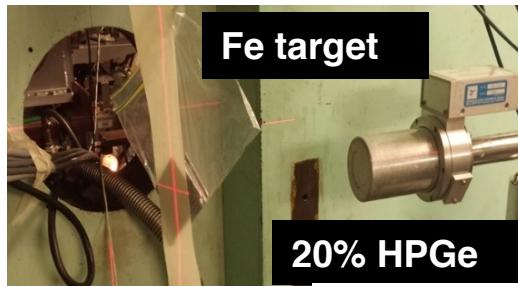
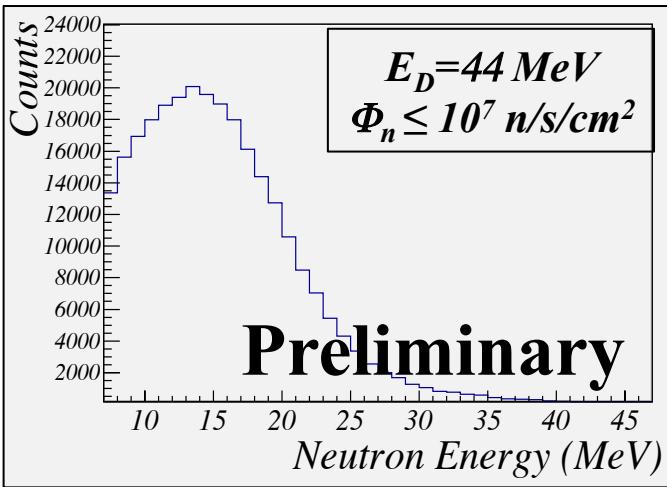
E(level) ⁿ	J^π ^{opq}	XREF				
		A	C	FG	IJK	O
2332.08 20	(0+)					
2355.81 5	(1+, 2+)	BC	F	IJK	O	
2365 2	2+					O
2377 2	4+				J	
2381 2						O
2385 2	(2+)				J	
2405 2	(0+, 2-)			J		
2432 2	2+			J		O
2433.25 3	3+	B	F	I		
2451 2				J		

Nuclear Physics A540 (1992) 27–56
North-Holland


NUCLEAR
PHYSICS A

Hexadecapole strength distributions of vibrational nuclei in
the $A = 100$ mass region

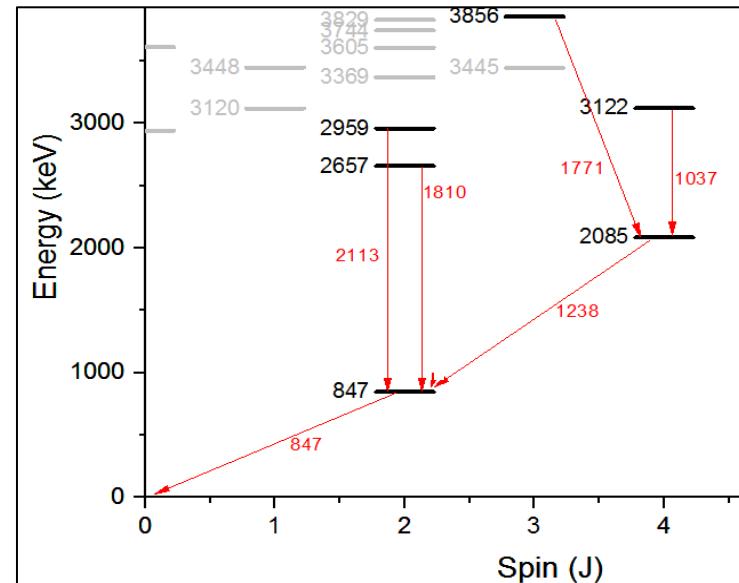
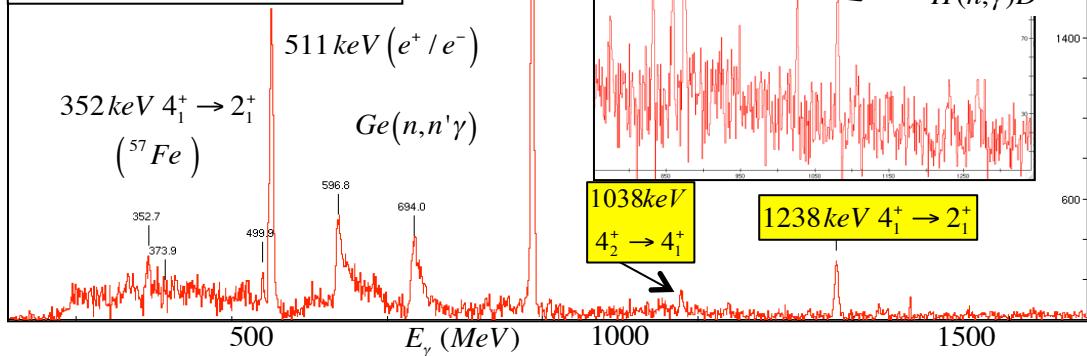


M. Pignanelli, N. Blasi and S. Micheletti
Dipartimento di Fisica dell'Università and INFN, sezione di Milano, I-20133 Milan, Italy





What are the effects of removing these levels on the calculated (n,n') reaction cross section?

TALYS shows that the discrete state population in $(n, n'\gamma)$ provides a probe for $\rho(J)$

We are performing complementary (n,n'γ) measurements using deuteron breakup at the 88-Inch cyclotron

*Our student-led experimental program:
 Josh Brown(G),
 Leo Kirsch (G) and
 Keegan Harrig (UG)*

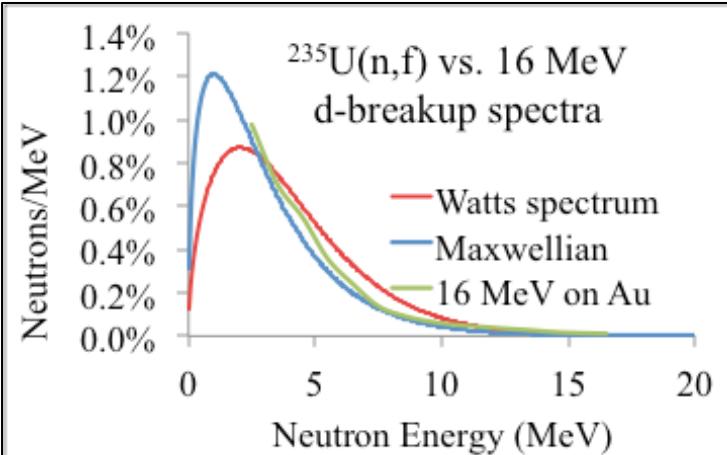


Similar measurements are taking place at HZDR¹ and GELINA²

¹R. Beyer *et al.*, Nucl. Phys. A 927 (2014) 41-52

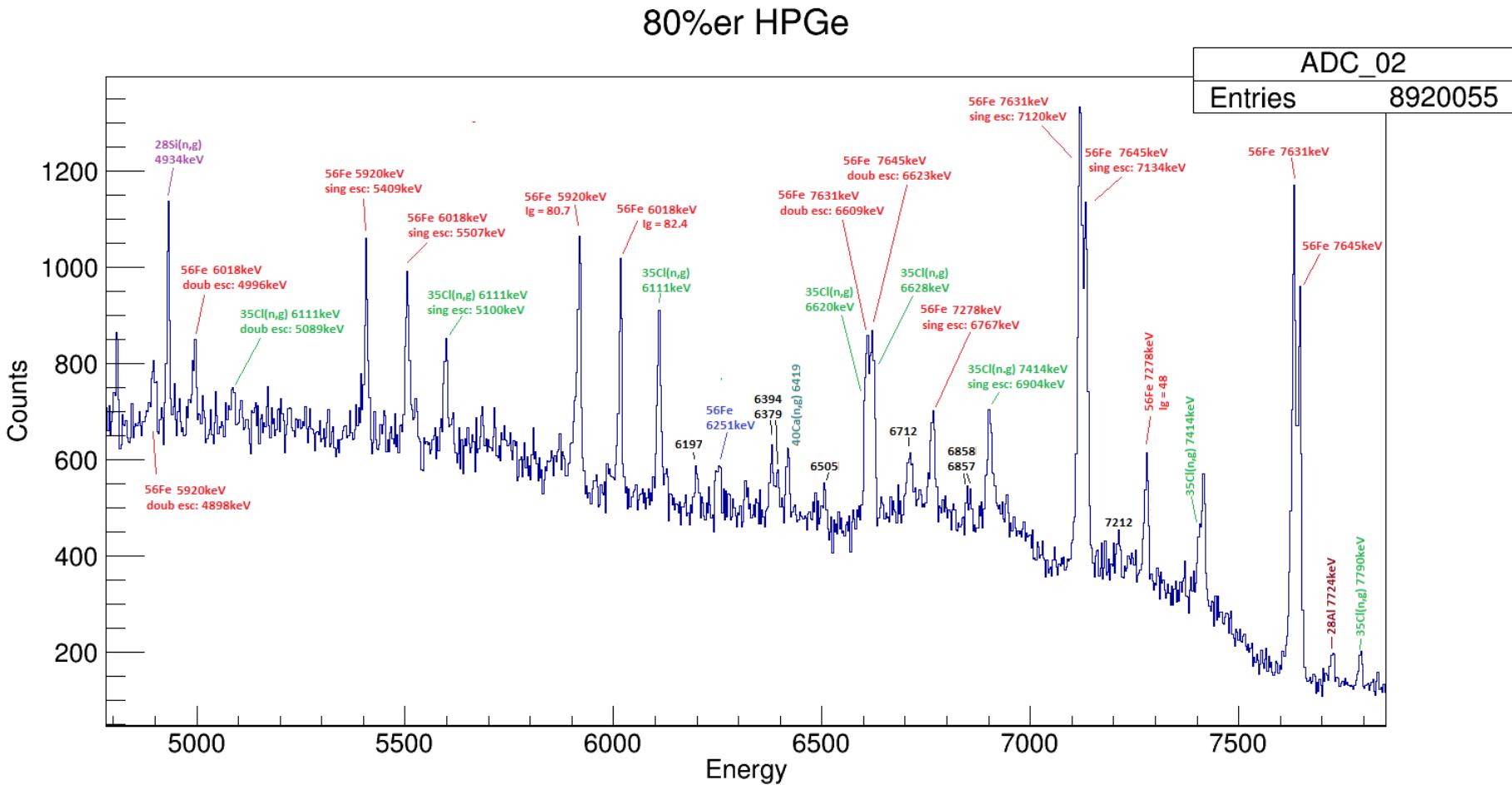
²A. Negret *et al.*, PRC 90, 034602 (2014)

In October 2014 we demonstrated that $(n, n'\gamma)$ can be studied in a fission-like neutron spectrum @ LBNL

1 hour of data with 1 cm thick ^{nat}Fe at $I_d=2 \mu A$. $E_n \approx 3-4$ MeV, ≈ 5000 n/cm 2 s.

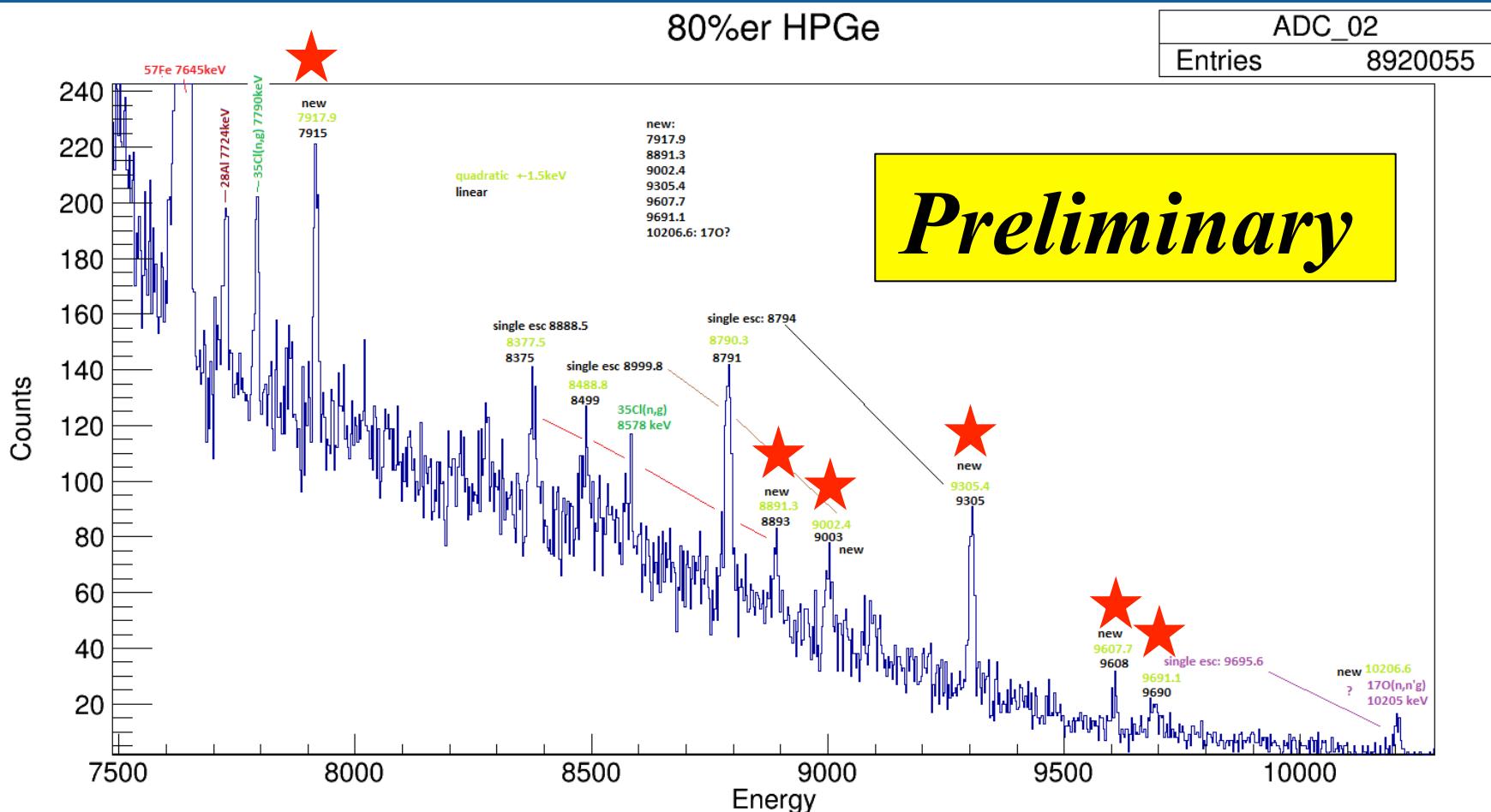


$$R_{exp/endf} (847 / 1238) = 1.26 \pm 0.08$$


$$R_{exp/endf} (847 / 1037) = 1.06 \pm 0.06$$

$$R_{exp/endf} (848 / 1238) = 1.04 \pm 0.08$$

$$R_{exp/endf} (848 / 1037) = 1.06 \pm 0.06$$



Last month we performed our first (n,n' $\gamma\gamma$) coincidence measurements (L. Kirsch)

$^{56}\text{Fe}(n_{\text{th}},\gamma)$ is used for energy and efficiency calibration

The experiment revealed several new potential transitions at $E_\gamma > 10$ MeV

Next Steps

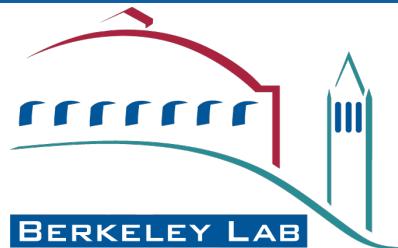
- Compile “high priority” nuclides in the atlas into ENSDF format
- Model the partial γ -ray production cross sections using EMPIRE and TALYS
- Complete modeling of the neutron beamline to obtain the Atlas neutron energy spectrum
- Perform targeted $(n, n'\gamma\gamma)$ measurements

All of this leads to a $(n, n'\gamma)$ horizontal evaluation

Collaborators on this work

**I. Abramovic¹, M.S. Basunia², D.L. Bleuel³,
J. A. Brown⁴, R.B. Firestone⁴, B.L. Goldblum⁴,
K. Harrig⁴, M.W. Herman⁵, A.M. Hurst², L. Kirsch⁴,
R. Slaybaugh⁴ B.W. Sleaford³, K.A. Van Bibber,
J. Vujic⁴, S. Walston³**

¹ Eindhoven University


² Lawrence Berkeley National Laboratory

³ Lawrence Livermore National Laboratory

⁴ University of California-Berkeley Dept. of Nuclear Engineering

⁵ Brookhaven National Laboratory-NNDC

And now for some blatant advertising

Workshop on Nuclear Data Needs and Capabilities for Applications

[Home](#) » [Events](#) » [Workshop on Nuclear Data Needs and Capabilities for Applications](#)

Dates: May 27-29, 2015

Location: Building 66 Auditorium, Lawrence Berkeley National Laboratory, Berkeley, CA USA

Resources: [Workshop Location and Transportation](#), [Hotel Directory](#)

2015 Fall Meeting of the APS Division of Nuclear Physics

October 28-31, 2015
Santa Fe, NM

Contacts: Lee Schroeder/Lee Bernstein

Division of Nuclear Physics

