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Motivation  
--need to know structure of the levels to model dynamic
   processes;  HF and HFB give better windows on the 
   structure than other methods.
--computational considerations favor finite-temperature HF 
   and HFB for systematic surveys.
--breaking and restoring symmetries is a universal 
   problem of mean-field theory

Outline of the talk



Thermodynamic Consistency
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A sum rule for the canonical entropy:

Useful as a computational check
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Entropy functions  in SMMC 
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FIG. 2: 〈J2
z 〉 = 〈 !J2〉/3 vs. β in the canonical ensembles for 148Sm (open squares) and 162Dy (solid

circles).

to provide useful tests of the HF and HFB approximations.

Nucleus E (MeV) Jπ D (eV)

SMMC HF HFB Exp.

148Sm 8.1 (3−, 4−) 3.8 ± 0.6 4.7 5.7

162Dy 8.2 (2+, 3+) 2.3 ± 0.3 0.67 2.4

TABLE III: s-wave resonance spacings D at the excitation energy E that corresponds to the

neutron binding energy, comparing the SMMC, HF and HFB results with the experimental values.

The latter are from Ref. [14].

III. THE FINITE-TEMPERATURE HF APPROXIMATION

We first consider the finite-temperature Hartree-Fock (FTHF) approximation. It is de-

rived by minimizing an expression for the grand potential Ω in terms of an uncorrelated

many-particle density matrix. Such density is uniquely characterized by its one-body den-
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Resonance spacing at neutron threshold



From grand canonical to canonical

Sc(�, N0) ⇡ Sgc(�,↵0)� ln ⇣(�, N0) + �
@ ln ⇣

@�

where

State density

⇢s(E) ⇡
✓
�2⇡

dEc
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◆�1/2

exp (Sc(�c(E)))

is the probability of         particles in the ensemble.⇣�1 N0

We have tested 3 approximations for ⇣�1



A simple model to verify saddle-point approximation and reduction 
to canonical entropy. 
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FIG. 17: Entropies of the (40, 20) model as a function of excitation energy E. See text for expla-

nation.
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FIG. 18: State density for the independent particle model with (⌦, N) = (40, 20). See text for

explanation.

exact particle-number projection). This improves the agreement with the exact result at low

40
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Conclusions:   
--canonical saddle-point state density is amazingly accurate;
--similar accuracy can be extracted from grand canonical
   in this model.



Preliminaries:   Performance of HF and HFB at zero and infinite temperature

nucleus β SMMC HF HFB correlation energy

condensation other

148Sm 0 -119.16 -119.1 -119.1

∞ −235.65 ± 0.015 -230.83 -232.51 1.68 3.14

162Dy 0 -238.35 -238.39 -238.39

∞ −375.39 ± 0.02 -371.78 -371.91 11.41 3.48

TABLE II: Limiting values of the energies calculated by SMMC, HF, and HFB for 148Sm and 162Dy.

β values are in units of MeV−1; energies are in units of MeV. The HF/HFB correlation energies are

the ground-state energy differences with and without pairing and deformation condensates. The

missing correlation energies are the differences between the HFB energies and the SMMC energies.

The SMMC energies at β = ∞ include extrapolation and statistical sampling errors [12].

excitation energy of 162Dy is higher than than of 148Sm from β = 0 to β ≈ 1.5 and is then

lower up to β ≈ 3.5. The higher excitation energy in 148Sm near β = 3 is likely attributable

to the collapse of strong pairing in that nucleus. The higher 162Dy excitation energy at

β ≈ 1 is likely due to the loss of deformation energy in that temperature region.

The other ensemble average that is needed is 〈J2〉. These are shown in Fig. 2 versus β

for both 148Sm and 162Dy. The higher values of 〈J2〉 of 162Dy at high β are largely due to

its deformation. In contrast, 〈J2〉 for 148Sm decreases dramatically at high β, as expected

for a nucleus with a J = 0 ground state and a gap of ∼ 0.5 MeV to the first excited J = 2

state. At low β, the remaining enhancement for 162Dy is due to its larger number of active

valence nucleons in the model space. The errors shown in Fig. 2 are from the Monte Carlo

sampling.

We next apply Eq. (5) to compute the canonical SMMC entropy. We start from β = 0

with the initial value of the canonical entropy given by Eq. (14) (i.e., the sums of Sn(0) and

Sp(0) from Table I), and use

∫ E(β)

0

β ′dE = βE(β)−
∫ β

0

E(β ′)dβ ′ , (43)

where E(β) is the thermal energy calculated in SMMC. The results are shown in Fig. 3,

with the main figure showing the low to intermediate values of β, and the inset showing the

high values of β at different scales.
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Units are MeV
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FIG. 6: The HF excitation energy of 162Dy vs. β for 0 < β < 2 MeV−1. The grand canonical

HF energy (dashed-dotted line) is compared with the approximate canonical energy in Eqs. (32)

and (33). We also show the energy for the spherical HF solution (dashed line) with respect to the

deformed ground-state energy. The solid circles are the SMMC excitation energies from Fig. 1.

Inset: expanded energy scale for higher β values.

The entropies at large values of β are shown in the inset. The grand canonical HF entropy

vanishes in the limit β → ∞, as we expect. However, the saddle-point canonical entropy

(using (31) inceases at large values of β (dotted line in the inset), indicating the breakdown

of the saddle-point approximation to the particle-number projection. Instead we use the

discrete Gaussian model result (28) (solid line in inset) that approaches zero when the HF

particle-number fluctuations approaches zero in the large β limit. The entropy (34) of the

discrete Gaussian model essentially coincides with the saddle-point canonical entropy for

the smaller values of β (i.e., β < 5 MeV−1).

In Fig. 8 we compare the approximate canonical HF entropy (34) (solid line) with the

canonical SMMC entropy (solid circles). Both curves start at the same value at β = 0

because the model spaces are identical. in the limit of large β, the grand canonical HF
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HF thermal energy --Dy-162

Sharp HF phase transition is completely smoothed out.



HF Entropy -- Dy162

Dashed line:   HF  sph.
Solid line:   HF def.
Circles:   SMMC
Dotted line:   g.s. rotational band correction
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FIG. 8: Approximate canonical HF entropy (34) of 162Dy (solid line) is compared with the SMMC

canonical entropy (solid circles). The dashed line is the entropy of the spherical HF solution. The

inset shows the entropies at large values of β. The dotted line in the inset is the ground-state

rotational band contribution (56).

agreement with the SMMC entropy at large β with no adjustable parameters. We also show

in Fig. 8 the canonical entropy of the spherical HF solution (dashed line). This entropy

approaches a finite non-zero value in the limit β → ∞ (see inset) because of the large

degeneracy of the spherical HF solution at T = 0. There are 2 valence protons in the

0h11/2 orbitals and 6 valence neutrons in the 0h9/2 orbitals, leading to a highly degenerate

ground state with a canonical entropy of ln
[(

12
2

)(
10
6

)]
= 9.54. The grand canonical HF

entropy in this limit is larger, and can be calculated assuming the uniform filling of the

valence degenerate orbitals in the T → 0 limit of the HF approximation. The corresponding

formula has the form of Eq. (15), where Ωp = 12, fp = 2/12 and Ωn = 10, fn = 6/10 and

gives a grand canonical entropy of 13.33.
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The kink in the HF density at E ⇡ 31 MeV signifies the shape transition from a deformed

to spherical shape. At lower excitation energies, the HF density underestimates the SMMC

state density; the SMMC density includes a contribution from rotational bands that are

built on top of intrinsic K states, and are not captured in the HF approximation. Above the

shape transition energy, the equilibrium shape is spherical and no longer supports rotational

band. The HF density is then very close to the SMMC density.
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FIG. 10: The HF density of 162Dy calculated using (36) (solid black line) and (37) (dashed green

line) is compared with the SMMC state density (solid circles) as a function of excitation energy

Ex. The inset describes an expanded density scale at low excitation energies.

We can try to repair the HF approximation by recognizing that the each of the deformed

HF configurations represents a band [6]. The angular momentum Jz corresponds to the

K-quantum number of the band. The entire band structure might be reconstructed with

knowledge of the mean-square moments of ~J , hJ2
xi = hJ2

y i (which holds for axially symmetric

shapes) and hJ2
z i together with the corresponding moments of inertia of the bands. The

moment of inertia for collective rotations around an axis perpendicular to the symmetry

axis can be calculated from the classical formula hJ2
xi = (Ix/~2)T . Assuming a Gaussian
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HF state density -- Dy-162

Factor of 10 too low without rotational band correction.



levels come in doubly degenerate time-reversed pairs and for an even number of particles

the ground state is non-degenerate, so that the T = 0 entropy is zero. In the IPM

E(�) =
X

i

fi✏i

h(�N)2i =
X

i

fi(1� fi) , (61)

where fi are the usual Fermi-Dirac occupations with a chemical potential that is deter-

mined to give an average particle number N . We then calculate the IPM level density in

the saddle-point approximation from an equation analogous to Eq. (36)

⇢IPM(E,N) ⇡
✓
�2⇡

dE

d�

����
N

◆�1/2

eSc , (62)

where Sc is the approximate canonical entropy in Eq. (20) with Sgc being the usual IPM

grand-canonical entropy Sgc = �
P

i fi ln fi �
P

i(1� fi) ln(1� fi).
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FIG. 11: The IPM density of 162Dy (dashed line) is compared with the FTHF density (solid line)

as a function of excitation energy Ex.

In Fig. 11, we compare the IPM level density (dashed line) in 162Dy with the HF level

density (solid line). At low temperatures the single-particle HF spectrum is similar to its
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Performance of independent-particle model -- Dy-162

Works well up to neutron resonance energy;
error less than a factor of 2 at 8 MeV.

Sign of error is easy to understand:
1

2
v⇢2

Excitations are independent particle and holes in the 
     HF ground-state single-particle potential.



HFB entropy  -- Sm-148 

Mild kinks due to pairing phase transition are completely suppressed.
Canonical entropy too low at T=0.
Grand canonical entropy looks much better near T=0.
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State density  --  Sm-148

HFB = HF above phase transition--
justifies “back-shift” parametrization
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Factor-of-three problem 
remains at  E_x ~ 1-4 MeV



Final Comments

1.   Number projection for HFB is not trivial, but may be doable.  E.g.        
       Uhrenholt, Aberg, et al., Nucl. Phys. A 913 127 (2013).

2.   What about soft nuclei?   Besides SMMC,  only candidate for a theory
     is the static path approximation, so far only used for well-deformed
     nuclei.

3.   Where did Bjornholm, Bohr, and Mottelson go wrong?
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Thermal energy in SMMC --  Dy-162 and Sm-148
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FIG. 9: Second moments of the angular momentum in 162Dy. The solid lines are the HF results

and exhibit a kink at the shape transition point. The dashed line describes the spherical HF

solution for temperatures where the lowest equilibrium solution is deformed. These HF moments

may be compared with the SMMC moments shown by solid circles. The SMMC moments satisfy

hJ2
x,yi = hJ2

z i = h ~J2i/3.

the HF solution is spherical. However, at large values �, the HF mean square moment of

Jx is much larger than the respective moment of Jz. Since the deformed intrinsic ground

state has good K = 0, the mean square moment of Jz approaches zero in the limit � ! 1,

while the Jx moment remains finite and large in this limit as the deformed state represents

a coherent mixture of states that belong to the ground-state band J = 0, 2, . . .. We also

show by dashed line the mean square moment of Jz for the spherical HF solution.

4. State densities

In Fig. 10, we show the HF density in the saddle-point approximation (18) and (36) (solid

line) and compare it with the SMMC state density (solid circles) vs. excitation energy E.
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Angular momentum in  Dy-162 ensemble


