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Abstract

* The 5t Workshop on Level Density and Gamma Strength was held at the
University of Oslo, May 18-22 2015

 Attended by over 60 leading scientists in the field from ~30 institutes in
~15 countries

* The scientific program included talks, and poster
presentations, covering the following topics:
— Nuclear level density
— Gamma-ray strength function
— Phase transitions in mesoscopic systems
— Applications in astrophysics and reactor physics
— Other related topics

* Asin previous Oslo Workshops (2007, 2009, 2011, 2013), the program
allowed for ample time for discussions
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Moderate and Heavy nuclei

Theoretical prediction of Pygmy Quadrupole Resonance: N. Tsoneva, H. Lenske, Phys. Lett. B 695 (2011) 174.




Theory

Odd-even stagrgering of level density
as function of angular momentum

Comparison of combinatorial level density versus data on
counted level densities:

- low excitation energy (up to 2 MeV):

accumulated number of levels
=

individual levels within +- 500 keV (typical for single particle potentials)

fine agreement when averaging over 3 nuclei

4 6
angular momentum

pairing influence well reproduced e-e versus o0-o0

odd-even staggering in deformed nuclei well explained: r — symmetry of potential

- intermediate excitation energy (2-4 MeV) transfer resonance data

start to fall behind data — factor 1.5 to 2 pG) o
. 0 O underestirpates
- at neutron separation energy (6-7 MeV) o LR v dnsty

’p mb
R

A DT nuclei
N W

Pexp ! Peor

factor increases — factor of about 4

Oslo_may15_TD




Reconcile RBM and MM

02(RBM) x /(U/a)A™/6
c2(MM) xc VUaAY? < m? >

2
If <m?>x A3 the A dependence agrees.

» If we assume a = A/8 (o = 1/8) then
< m? >=0.1985A3 makes MM equivalent to RBM
» p shell < m? > /A% =0.144

N rh & J ) 3 ] . - ~1 71 r 3 ‘ 2 2 R
> sd shell < m? > /423 0160 Microscopic Model goes to the rigid body model if < m* > A3 ;
ax A

» Convergence ~ 20 MeV to Rigid Body Model.

. 9 2/3 _ ‘ ,
> sdg shell <m? > /ATZ=0182 , Not yet converged at 6-8 MeV.

» fp shell < m? > /A%/3 =0.175

» This is close to the estimate ab« A Uiy [ 2% [ %/ B |[ A [ U 0iev) | o2 | o%/o3(RBAM)
20 2 1.2 0.6 60 2 21 0.3
. . 4 2.4 0.85 4 7.43 0.7
Conclusions N IS N
10 8.1 1.81 10 13.65 0.85
20 6.96 1.11 20 23.02 1.02
30 2 0.97 0.3 70 2 2.96 0.33
4.0 2.6 0.58 4 9.71 0.8
6 4.2 0.76 6 19.32 1.3
8 5.43 0.85 8 24.32 1.42
10 7.52 1.05 10 25.41 0.32
.. P . ‘ . . 2 20 11.0 1.1 20 30.11 1.11
» Have compared Rigid Body and Microscopic Model predictions for o o2 [ 13 0.31 W 2 | 50 95
3 L. ) 6 11.29 1.46 6 22.58 1.3
» Find A and U dependence similar if @ oc A and < m? >oc A%/3 8 14.1 16 8 | 205 152
. . 20 15.9 1.13 20 36.3 1.14
» Data base limited: low U — 02 ~ £0%(RBM) GO S - VI NS | B B B
) . ) ) . ) ) 6 16.0 1.6 6 18.9 0.94
» Some evidence for shell modulations in calculations with microscopic & | el 138 8 | ar 99
nlO(lel fOI‘ U S 10 1\IOV 20 17.4 0.95 20 38.2 1.05
» Goes to 02(RBM) as U — 20 MeV

» Two body model calcualtions agree with data and generally with
Microscopic Model.

» Need reanalysis of level densities for deformed nuclei.
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Nuclear Ground State

Single-Particle States
Phenomenological density

functional approach based on a
fully microscopic self-consistent
Skyrme Hartree-Fock-Bogoljubov
(HFB) theory

Pairing and Quasiparticle
States

N. Tsoneva, H. Lenske, Phys. Rev. C 77 (2008) 024321

H

res

_ [yph ph pp
Hres _HM +HSM +HM

Excited states
deformations, vibrations, rotations

Hyf' - multipole interaction in the
particle-hole channel;

Hsy - spin-multipole interaction in the
particle-hole channel;

HyPP - multipole interaction in the
particle-particle channel

r r
Vr-r) =Y ()R (r,r"Y,,(6,9)Y, (0.9
Ut
RI(r,r)=xr/R,(MNDR, (¥"

T = Ojsoscalar interaction

T = 1 isovector interaction
N.Tsoneva, OSLO15



$® 10! N. Tsoneva, S. Goriely, H. Lenske, R.Schwengner, PRC 91, 044318 (2015).
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A new theoretical method based on Density Functional Theory and
Quasiparticle-Phonon Model is developed.

Presently, this is the only existing method allowing for sufficiently large
configuration space such that a unified description of low-energy single-parti
multiple-phonon states and the giant resonances is feasible.

N.Tsoneva, OSLO15



Methods | (Reactions)

Mma

Hauser — Feshbach Neutron Capture — $-Oslo

* Nuclear Level Density
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Gas Stopper

S SuN 7
-yclotron Fragment PB-decay
Separator experiments
with fast
beams

Ex= Evl + Ev2+Ev3+Ey4 T..

T 75Ga decay

T T T T

Methods | (Reactions)

(a) Raw matrix
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v'24 PMTs
v Efficiency > 85% for 1 MeV
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Methods Il (Data Analysis)

The Oslo method step-by-step

Run experiment and obtain particle-y coincidences
slo Method

Unfold spectra with detector respons

Extract first-generation matrix

kN

P wNR

Extract level density and gamma strength

The quaSi‘Conﬁnuum region functional forms from first-generation matrix

5. Normalize results to other data
Ex
-~ —
From total to primary jy-ray matrix

= I'2 D Continuum 2Mo(p,p’)

—
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2-6h spin
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Stars-LIBERACE at LBNL, (p,p’) at 18 MeV

First excited starg and
grownd stare of " Ge
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CACTUS/SiRi

D4

Apparatus

dcture at the Oslo Cyclotron Laboratory

Scattering
chamber

Switching
magnet

A

Radiation hardness
Mini-orange
spectrometer

< magnet

SISAK

Analyzing

Switching

Q1
lonized beams o
Particle type Energy (MeV) ~
Proton 2-35
Deuteron 4-18 MC-35
‘He 6-47 Scanditronix
‘He 8-35 cyclotron

Sth Works

Uz
b on NUSERFTRVETDETTY
Gamma gerggﬂéﬁe,glpﬂa

Newest addition: Fission-fragment detector (NIFF)

CACTUS

Q

[_h

2/

NIFF is a PPAC detector.

The active area of NIFF covers about
60% of the forward hemisphere.

Detection efficiency higher than 90 %.

Siki \IFF

———

beam
direction

@,

1}

target
ladder

T\

T.C. Tornyi et al. / Nuclear Instruments and Methods in Physics Research A 738 (2014) 6-12




vS = High Intensity y-Ray Source

linearly polarized,
_ - S ' Target
mono-energetic y beam o ey
7 fr —"" | Detectors
A A ™ “
o™
Seqnn- H. Weller et al., PPNP 62 (2009) 257
D\FELIH'ITO
4 E Jt
Selective excitation: Decays to:
= Spin J=1 . r, = Ground state
= Excited states
= Energy E, = |1,
———Ji' | y-ray detection with the
v3 setup
0 oW

V. Derya, University of Cologne, AG Zilges Recent results on the PDR and thg



e AE-E or single PIPS
- 4 angles relative to beam
e 60°90° 120° 130°
— Solid angle coverage:
Up to 4%
— Typical energy resolution
~70keV in-beam

S.G. Pickstone, AG Zilges, University of Cologne

HORUS
— 14 HPGe detectors
e Up to 6 BGO shields
5 angles relative to beam

Photopeak efficiency:
~2% @1332 keV

Energy resolution:
~2keV@1332keV

Decay behaviour of 1- states in °2°*Mo observed with SONIC@HORUS



Cluster 3

The DANCE array

Cluster 2

Detector for Advanced Neutron Capture
Experiments

+ 162 segments with 4 different shape crystals
(160 segments with crystals)

+ Calorimetric detector (nearly 4) -
detects full energy of decay cascade

+ High efficiency and high neutron flux allows
measurements on milligram samples

* Highly segmented to allow detection of
radioactive targets

Half of DANCE array with 6LiH ball
yAR




F Transparent neutron beam detectors
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The research infrastructure of BNC
Budapest Neutron Centre (1993)

TAST
¢ P . PSD
| ! g | Shielding Tunnel (for 3 Ngs)
1 Ry N |

MTEST) # $ A Moderator Cell of CNS) 1\
/ nOtw \

=t ==+ - -

Gravity :Tank)

O <l

* Nuclear analytical and imaging tools of MTA EK
— Prompt-gamma Activation Analysis (PGAA) (mm)
— PGAI-NORMA elemental and structural imaging ( 2 mm, 200 um) Macroscopic
— Neutron-, gamma- and X-ray radiography (RAD) ( 100 um) ~ structure,
— Neutron Activation Analysis (NAA) composition
— Mossbauer spectroscopy (chemical environment)

* Material microstructure tools of Wigner FK (not all listed)
— Neutron powder diffractometer (PSD, MTES ) (~ 0.1 nm, 1A)
— Small angle scattering (SANS, FSANS) (1-150 nm ) Microscopic
— Reflectometer (REF and GINA) ( nm surface structure) >~ structure
— TOF diffractometer (TOF) (nm lattice distance)
— Triple Axis Spectrometer (Athos, TAST) (inelastic scattering) =




anti-vibration slab —— %VE |
+1 um @ < 10 Hz I
Laser beam system: d / ; ; . b
e 2 HPLS up to 10 PW — 6 output lines| My A || E
2 x 0.1PW i §4 'f: €N
2x 1 PW : > ib
2 x10 PW GG 38R I plov=xy :
Gamma beam system f g% v Al 2 L
* High intensity oon'| 1 T D[ .m .E . E 2%;” MR
* High energy resolution T 3% :
. HPLS atsh e
Experiments with: 1= :g . N |
p E - l—l_ ||-|-|T |H‘IT T lS:l
L LT [T (10 DI 2e
- High power laser beams N{'ﬂ“ il |
- Gamma ray beams Cu\g T 7T BBEEER %:
1 o
- Laser + gamma ray beams - 7 . |
e ) :mmm _ F |
D)»») d] e Photoneutron reaction studies at Extreme Light Infrastructure ~Nuclear

5t Workshop on Nuclear Level Density and Gamma Strength, Oslo May 18-23

Nuclear Physics



NEUTRON PRODUCTION IN INVERSE KINEMATICS

LICORNE
—————

13-17 MeV

Lithium Inverse Cinematiques ORsay NEutron source

» p(’Li,”’Be)n reaction in inverse kinematics

» Focused source of fast neutrons between 0.5
and 4 MeV




Isospin structure of the PDR in stable nuclei:

The K600 collaboration @ iThemba LABS

&
b

(a,0y) @ E_ =120 MeV
combining K600 with eight
Ge(HP) from AFRODITE array

“Mg(cuory) at E =160 MeV
1001~ 0,<1.97 ; 0, = 147°430°
i abs|E_ ., - B/ -1368] < 100keV

02 3 4 5 6 7 8 9 10 11 12
E, (MeV)

Collaboration: Cape Town — Cologne - Darmstadt — Milano — Osaka — Notre Dame
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G A STRENGTH FUNCTION OF %Ni

P At9.3MeV:

>1If it is of E1 character, it could be a pygmy mode:

*  Often described as a neutron skin oscillation vs
N= Z core.

- Seen in %8Ni at 9.5 MeV.

20

15

If it 1s of M1 character: possible spin-flip resonance.

10
y-rayyenergx/En (MeV)

Fitted to a Standard Lorentian (SLO).

P Below 3 MeV: Data suggest a low-energy
enhancement or upbend! (seen in ONi,

suggested by the *°Ni data).
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d experimental effort on 74Ge. Measurement at ELBE

ethod to characterize feeding from the quasi- 1 eetu) £7= 121 Mey 0= 127
continuum to discrete states. 310 experimental spectrum
Pt
« T3Ge(p,p’) and "4Ge(a,a’) data. =

€ 10° |
§ response—corrected

) 10° atomic background

| Courtesy T. Renstrom . Up-bend iS real. 1.2 3 4 /:%(l\?ev; 8 9 10 M

} « Pygmy resonance at ~7 MeV.

:Mﬂ « What about (y,y’)? Next Talk!

Gamma-Ray Energy (MeV)

Gamma-Ray Strength Function (MeV-3)
'P:MHH

Dipole strength functions in 7*Ge

Proton Number Z

100 E
025
015 64 82

80 ”] E

I 1 1 1 I I
0 20 40 60 80 100 120 140 160
Neutron Number N
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$ This work —— 1 BY) +(Y,p) ——
0.001 T S S
1.5 2 2.5 3 35 4 4.5 5
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E;m, [MeV] E, [MeV]

= excellent agreement of experimental data with previous measurements
= using adjusted y-strength also reproduces total cross section

= location and strength of PDR is consistent
where do deviations come from?

— vy-branching ratios, dependence on
nuclear temperature?

R. Schwengner et al., Phys. Rev. C 78 "
(2008) 064314
P. Axel et al., Phys. Rev. C 2 (1970) 689

L. Netterdon et al., Phys. Lett. B 744 (2015)
358

L. Netterdon, IKP, Univ. of Cologne, AG Zilges

y-ray strength in %°Zr constrained by partial cross sections of 8Y(p,y)*°Zr



Why are “PSFs” different?

Experimental data are incorrect

» Concept of photon strength function and/or Brink hypothesis
Is not valid

1 0' :— .-.-l'l-.- —:

+ “ap.
'

—
<
~
I

= *Mo(y,n) (Beil 1974)

A Mo( n)
(Utsunomiya 2013)

v *Mo(y,y) (Rusev 2006) |
A ‘“’Mo(/ v) (Rusev 2008)
Mo(/ Y) (Rusev 2009)—

E%Mo He,’He'")

(Guttormsen 2005)

0 2 4 6 8 10 12 14 16 18 20
E (MeV)

PSF (MeV°)

10 5

Oslo, May 18-22, 2015



Consistency of data?

These “corrections” - renormalization of Oslo data and correction
of ELBE shape at high energies - would give a reasonable
agreement of all data for E, > 4 MeV ...

But problems remain

1. Total radiation width
reproducing “HIyS
normalization”

NRF point at 3.5 MeV —
temperature dependence
of PSF?

Problem with reproduction
of feeding low-lying
excited levels in NRF

107 b

Oslo, May 18-22, 2015

m; *+
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0 2 | 4 6 8
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138,139 3 Results

Interesting Features

3% a, present experiment

'**_a, present experiment
39 a(y,n), Utsunomiya (2006)
« "La(y,x), Beil (1971)

—— Total fitting function
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sity of 234U, found by the “Oslo method”

bnstant temperature — consistent Hope to get to S_ — work in progress
with other U and actinide nuclei to subtract fission gammas
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Examples of surrogate reactions
performed since 2004

/ ; lljc.edl r.ealcltl,o'?s, Desired reaction E, range (MeV) Surrogate reaction Type Reference
241
.§ ™ (n, f) cross sections
S [ .. Z0Th(n, f) 0.5-10 ZTh(*He, @) absolute Petit et al. (2004)
2 Fission Z0Th(n, f) 0.22-25 Z2Th(*He, a)) ratio  Goldblum et al. (2009)
2 2 ZITh(n, f) 0.36-25 BITh(*He, *He') ratio Goldblum et al. (2009)
5 OK! B1pa(n, f) 05-10 Z2Th(*He, 1) absolute Petit et al. (2004)
§ T Z3Pa(n, f) 0.5-10 Z2Th(*He, p) absolute Petit et al. (2004)
§7 Z3pa(n, f) 11.5-16.5 B2Th(°Li, a) ratio Nayak et al. (2008)
1 = Dabbsetal Example U(n, f) 0.4-18 Z4U(a, ') ratio Lesher et al. (2009)
T JENDL33 & JEFF-3.1 p—‘ 2U(n, f) 0-20 P8U(PHe, @)  absolute, ratio  Lyles er al. (2007a)
| € ZTU(n, f) 0-13 “u(d, d) ratio Plettner et al. (2005)
ZTU(n, f) 0-20 B8U(a, &) ratio Burke et al. (2006)
05— 5 : "t : ('5 : é o 29U(n, f) 0-20 y(*0,1%0) ratio Burke e al. (2011)
ZTNp(n, f) 10-20 8U(*He, 1) absolute, ratio  Basunia er al. (2009)
Neutron Energy /MeV Z8py(y ) (20 29py(y 4 ratio Ressler o7 g/ (2011)
G. Kessedjian, et al., Phys. Lett B 692 T Am(n, f) 0-10 ““Am(*He, a) absolute  Kessedjian et al. (2010)f
(2010) 297 : “Cm(n, f) 0-10 ;’”Am(‘lle.t) absolute Kessedjian et al. (2010)
— *Cm(n, f) 0-3 M AmCHe, d) absolute Kessedjian et al. (2010)
(n, ) cross sections
Rare earth nucleus '5Gd(n, y) 0.05-3.0 %Gd(p, p))  absolute, ratio  Scielzo et al. (2010)
B This work S1Gd(n, y) 0.05-3.0 8Gd(p, p')  absolute, ratio  Scielzo et al. (2010)
3 Wit et o a0 AT 1Dy (n, y) 0.13-056  'Dy(*He, *He') ratio Goldblum et al. (2010)
= JEFF-3.1 [20] & ENDF/B-VILO [21] NOT OK | ‘j"Yb(‘vn' 7) 0.165-0.405 ”‘_Yb("llle. 311:") ratio Goldblum et al. (2008)
TALYS . "Yb(n, y) 0.225-0.465 "Yb(*He, a) ratio Goldblum et al. (2008)
", "Yb(n, y) 0.12-0.24 'Yb(d, p) ratio Hatarik e al. (2010)
". Example Z3pg(n, y) 0-1 22Th(He,p) absolte  Boyer e al. (2006)
" e . =U(n, y) 0.9-3.3 25U(d, p) ratio Allmond et al. (2009)
L BTU(n, y) 0.2-1.0 BU(a, o) absolute, ratio Bernstein et al. (2006):
. .}‘tﬁtﬁp X 232Th(n.v) 0-1.2 232Th(d.p) absolute __J. Wilson et al. (2012)
I . U DU T b 75Lu(n,y) 0-1 74Yp(*He,p) absolute  G. Boutoux et al. (2012)
020080 Mew) 72Yp(n ,y) 0-1 174Yp(®He,a) absolute  G. Boutoux et al. (2012)
G. Boutoux, (92‘0‘;'5)2’1“;5- Lett B 712 Jutta Escher, et al., Rev. Mod. Phys. 84 (2012) 353
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02%
Pdecay

02

(neutron-induced) 22U + n

Pgamma spin 0_5
Pneutron spin 0_5
Plission spin0_5
Pfission n-inducad
Pgamma N-inducad

Pdeca)0 “

0z

STEP 1: Fix the parameters of the model that reproduce the neutron data (LD, ySF...)

Poamma spin & S
Pooutron spin 6_5
Plssion spin 6_5
Pfssion N-inducad
Poamma n-induced

L]

E’(mU)r

Observations :
» Py and P;are both very sensitive to the Jr

=) In contradiction with whatwe observe - can not reproduce surrogate data ?
=) Surrogate data represent an important test to statistical models

Q.Ducasse
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vouhclusion

The surrogate method

»>The surrogate method is the only way to obtain information of very
radioactive nuclei (T, < fewdays)

Results

+ Fission : Cross section measurements are comparable to neutron data
: Cross section measurements are NOT comparable to
neutron data > use it for fixing statistical model parameters

+ Gamma emission

Observations

»>Fission much less sensitive to the spin distribution than gamma emission

Statistical model calculations

> Seem not to be able to reproduce experimental surrogate data

Q.Ducasse
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IAEA Data

. Evaluation Methodology —

differences in data — Panel?

Data Sources
Data Format
Evaluation Methodology

New Measurements

A A

Understanding Sources of
Discrepancy

2016 New 5 year Project

Discussion(s)

Q
N
N
R

aﬁ‘

< Level Density g&“ Gamma Strength

1. Collective Enhancements (and
demise with excitation energy)

2. Can we go from an experimental
level density to the partition
function ?

Discussion on change of
deformations, staggering in bands due
to coriolis force. How to measure
these, systematic survey across region

deformed region?

Van a “thermostat” have a temperature other
than its own?
T=1,-213K

Sl
A 0=T=2mK

. S=S°-$=So-%
0

z
=E
« p(E)=c=e ™
« Is Tpjust a “parameter”?
. Z(1)= ] dBp(EY = =BT e=
L-T
« According to this, a thermostat, can

have any temperature lower thanits
own!

*  Collective Strength
- Brink-Axel —E1’s
- Rotation —E2’s
—  Scissor Mode — M1

*  Single Particle Strength

*  Level Spin Dependence

* Level Energy Dependence

*  Statistical Model for Analysis (PT?)

*  Separation of Photon Strength from
Level Densities

Discussion on problem with large errors,
consistency. Population mechanism,
dependent on K? Dependent on reaction
mechanism (p, p’), (n, g’), (3He,*He)? Any
evidence to invalidate our assumptions?




Conclusion

* Need for database of measurements
* Need for systematic experiments

* Need for better consistency
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