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The big Hagedorn that couldn’t
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The (too) many ways of obtaining the Hagedorn spectrum
( given the experimental evidence!!)

1. Bootstrap

2. Mit Bag
3. Regge Trajectories

4. Fractal shapes ( if no surface energy)
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The partonic world (Q.G.P.)

(a world without surface?)

e The M.I.T. bag model says the pressure of a Q.G.P. bag is constant:
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* The enthalpy density is then

2
el E, e

=—= T + B
vV v 30

e which leads to an entropy of

e and a bag mass/energy spectrum (level density) of

e p(m)=exp(s)x exp(Tﬁ) .
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Ty = B ; g: # degrees of freedom, constant p = B, constant 7, =| B—|.
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Hadronic vacuum
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Primer on first order phase transitions in
micro-canonical systems

. E
Linear Dependence of P(E) = exp(S) = exp(?)
Entropy with Energy ! s 1

E T
S(E)=KE = £
T This is the Hagedorn!
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Energy goes in, Temperature stays the same



ool A phase transition is the transformation of a

0 Q A 4 Article Talk

RS Phase t . thermodynamic system from one phase or state of matter to
i ase ransitaon
WIKIPEDIA another one by heat transfer. ......

The Free Encyclopedia From Wikipedia, the free encyclopedia

Ehrenfest classification

Paul Ehrenfest classified phase transitions based on the behavior of the thermodynamic free
energy as a function of other thermodynamic variables.! Under this scheme, phase transitions
were labeled by the lowest derivative of the free energy that is discontinuous at the
transition. First-order phase transitions exhibit a discontinuity in the first derivative of the free

energy with respect to some thermodynamic variable.

Modern classifications:
In the modern classification scheme, phase transitions are divided into two broad categories,

named similarly to the Ehrenfest classes:

First-order phase transitions are those that involve a latent heat. During such a transition, a
system either absorbs or releases a fixed (and typically large) amount of energy per volume.
During this process, the temperature of the system will stay constant as heat is added




n a “thermostat” have a temperature other

than its own?

T=T.=273K
or
0=<T=<273K

A E
° S=SO+—Q=SO+—
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ot~
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. p(E)=eS =eS

* Is T, just a “parameter”?

e Z(T)= [dEp(E)e™" =

LT s
1,-T
e According to this, a thermostat, can

have any temperature lower than its

own!
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No thermostat: any temperature
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One thermostat: one temperature

Two thermostats: no temperature
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Universal 1°* Order Low Energy Phase
Transition in Nuclei and the iviagic of
L. G. Moretto, A.C. LalahaMe&Gsittormsen and S. Siem

Hallmark of 1%t order phase transition in micro-canonical systems?

Linear Dependence of Entropy with Energy !

E
E
— = = E = -
S(E)=KE - or p(E) eXP(T)
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This is universally observed in low energy nuclear level densities
T is the micro-canonical temperature characterizing the phase transition
Energy goes in, Temperature stays the same



Level densities, actinides
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Constant-temperature level densities in the quasi-continuum of Th and U isotopes
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Guttormsen et al. (2001)
von Egidy and Bucurescu (2005)

+ von Egidy and Bucurescu (2009)
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Wihat causes the phase transition?

1. In non magic nuclei Pairing

2. In magic nuclei Shall gap



BCS Phase Transition

TCr T
Nearly 15t order?
Oc, =4In2gT, # quasi particle at T,
1, T ., )
E,. = 5 A, + ?chr Energy at criticality
E. _ 3.53x A, = A, |
Q. 16In2 !

Fixed energy cost per quasi particle up to criticality : little blocking ?




F= LOG(LEVEL DENSITY)
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Fig. 14. Lines of constant level densities in the E, Q plane. The calculation refers specifically to a
nucleus with g = 7.0 MeV~1! and with 4, = 1.0 MeV. The lowest level density line has a value
Inp = 2.0. The higher lines are plotted in steps of 3.0 Inp.






The Specific Heat Jump at Tc
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Figure 26: Specific heat of aluminium as a function of temperature in the superconducting
state and the normal state (applied field of 300 Gauss). Data taken from Ref. [237]. The
BCS prediction, given the normal state data, is given by the solid curve.
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' 1 erder phase transition implies two phases

Superfluid phase gas of independent quasi particles

=
* * * x *

superfluid

What fixes the transition temperature?
constant entropy per quasi particle

Remember Sackur Tetrode

V4sz

S = N In(
N3 KW

) = N In(#states / quasiparticle)



Entropy / Quasi Particle
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a) Even-0Odd horizontal shift....

odd A
A
1n ,0 A=

A

should be compared with even-odd mass differences

>

b) Relationship between the above shift and the slope 1/T

c) Vertical shift or "entropy excess”
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Testing the picture:

A=1—21MeV
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oW energy level aensities tor nuciel away trom shells
vademecuim Tor DEZINNErS. ...

1) Get T, from A=12/A1/2
2) Write Inp(E)=S(E)=E/T

3) Shift horizontally by A or 2A for odd or odd-odd nuclei



Specitra with “any” gap

Ek E, = \/(8k —A) + A E,
E, =‘€k —A‘

pairing E, =+/(¢, ~ 1) + A’ shell Model E, =|¢, — A| =
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qp
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us compare....

Entropy/ quasi particle




Comnclusions

1) The “universal” linear dependence of S=Inp with E at
low energies is a clear cut evidence of a first order
phase transition

2) In non magic nuclei the transition is due to pairing.
The coexisting phases are
a) superfluid
b) ideal gas of quasi particles

1) In magic nuclei the transition is due to the shell gap



Low Energy Level Densities

C= %gAZO E
Condensation energy

Gilbert and Cameron did empirically the match between linear and square root dependence.

In so doing they extracted TCR !



n a “thermostat” have a temperature other

than its own?

T=T.=273K
or
0=<T=<273K
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LINES OF CONSTANT LEVEL QENSITY
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s Quiasi Particle Spectiruim

=S

E, E, =\(g,-A) + A
= |€k ‘)“|

g, —A
Ground State IMiasses

=(A
even even Odd A 0Odd Odd
0q.p. 1q.p. 2 q.p.

Hence even odd mass differences
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THERMODYNAMICAL PROPERTIES OF A PAIRED NUCLEUS
WITH A FIXED NUMBER OF QUASI-PARTICLES f

L. G. MORETTO tt

Department of Chemistry and Lawrence Berkeley Laboratory,
University of California, Berkeley, California 94720

Received 2 December 1974

Abstracé: The general formalism for the description of the properties of a paired system with fixed
number of quasi-particles has been developed. The number of quasi-particles has been intro-
duced into the pairing Hamiltonian by means of a Lagrange multiplier. The grand partition
function and all the other thermodynamical functions have been derived. The formalism has
been applied to the uniform model. The properties of the system in the limit of zero tem-
perature have been obtained analytically. It has been found that for temperatures smaller than
the critical temperature of the unrestricted system, a first order phase transition from the
paired to the unpaired phase occurs when the quasi-particle number is increased isothermally.
Above the critical temperature the transition becomes of the second order. The model also
predicts that at a fixed quasi-particle number the pairing correlation increases with increasing
temperature. In particular, at the highest excitation, and at small quasi-particle number, the
pairing correlation is as strong as in the ground state. A rapid decrease and an eventual
disappearance of pairing occurs as the system is allowed to relax towards its equilibrium
number of quasi-particles. :
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Fig. 11. Lines of constant entropy in the E, @ plane. The thick solid line corresponds to S/S;; = 0.
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Fig. 9. Energy quasi-particle number isotherms. The lowest line for 7 = 0 is the same as in fig. 1.

The higher isotherms are spaced in steps of 0.2 T/T.,. The forbidden region, defined by the two

dotted lines, originates at the phase transition for T = 0 and terminates at T' = Ty, @ = Q. The

boundaries of this region converge into a single line for 7 > T,.. The locus of most probable Q
is shown by the small and large dot line.



