Low-energy enhancement in the y-ray strength
functions of 7374Ge

,{‘ \/)/////,/;//"\ A k
Q ©
g 10°
) P
A. o " |
/ e {y > 07 {‘F g
= P??7?7

-
o
&

y-ray strength function (MeV™)

Therese Renstrgm

v b e by b b Lo ben Lann Laay
0 2 4 6 8 10 12 14 16 18 20
MeV,

Oslo Cyclotron Laboratory, ey enerey €, (e
University of Oslo

5th Workshop on Nuclear Level Density and Gamma Strength Oslo, May 18 - 22, 2015



Many people measuring the same
property...?
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-New neutron resonance parameters, small uncertainties
‘ Need for a new common case?
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Advantages by this type of joint effort:

- Timescale
- Communication

- Understanding of data analysis

- More FUN!
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Proton number
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Why Germanium???
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Level density and gamma-decay strength
can be extracted using the Oslo-method

Neutron-capture rates

Figure courtesy of Ann-Cecilie Larsen



Proton number

“Almost all of the (n,y ) cross sections of the 277

stable isotopes have been measured. The few exceptions are

170, 36,38y, 40K 50\ 702 77,8250 9899RY 131xe,

138La, 158Dy, and 195Pt...”, F. Kappeler et al., Rev. of Mod. Phys, 83, 2011
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Two theoretical
explanations of the type:

Argues for E1

E. Litvinova and N. Belov,
Phys. Rev. C 88, 031302(R)
(2013)

Argues for M1

R. Schwengner, S.
Frauendorf, and A. C.
Larsen, Phys. Rev.

Lett. 111, 23504 (2013)
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http://www.mn.uio.no/fysikk/english/research/about/infrastructure/

OCL/nuclear-physics-research/compilation/
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Two experiments
below and above Sn
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’4Ge & bonus nucleus 3Ge
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Neutron resonance data

-discrepancies between the libraries

Atlas of N. Res. by S.F. Mughabghab
RIPL3

In the case of 7374 Ge, s-wave spacings, DO, are given in both

Atlas of N. Res. by S.F. Mughabghab and RIPL. After careful consideration we have
chosen to use an average value of the two proposed sets of DO

values and uncertainties. The two main reasons for this choice

are:

1. For 73,74 Ge the DO values from Atlas of N. Res. are larger by 38%

and 60%, respectively, than the values given in RIPL3.

2. Atlas of N. Res. presents a table of measured

resonanses giving a good transparency.

The experimental results that give the values listed in RIPL-3 are not presented in
any peer-reviewed publication.



The photo-neutron experiment
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Relativistic electrons on eV photons

Ev Inverse Compton Scattering
Laser Compton backscattered “photon accelerator”
-ray beams are ideal because: 0
e Ee
-Almost monochromatic £ Iaser V'V Electron Beam e
- Tunable energies L |
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20 3He proportional
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Shell-model calculations, 4Ge

108 M1 shell model

Talk of R. Schwengner
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Constraining (n, y)-cross sections
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Using a variety of different inputs in TALYS
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Maxwellian Average Cross Sections

Reaction kT (keV) | MACS (mb) MACS(mb)*
(new)

2Ge(n,y) 30 66 (13) 73 (7)

3Ge(n,y) 30 294 (78) 243 (47)




Credit: NASA Goddard
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Proton number

The search for the upbend continues...
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Beta-Oslo method on 7880Ge
NSCL PAC 39 PROPOSAL

“Search for the upbend in neutron-rich Ge isotopes”
Spokespersons:
A. C. Larsen, M. Guttormsen, T. Renstrgm (University of Oslo, Norway)



A sneek peek at the most neutron rich isotope analysed to date using the beta-Oslo method...
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Experiments performed in Oslo,
vSF to be published.
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Summary

Strength functions of 7374Ge both show a low energy enhancement

If this enhancement is there for more neutron-rich Ge-isotopes, it will
strongly influence the (n, y) reaction rates

Shell-model calculations indicate that the upbend is of M1-type
Good agreement between the photo-neutron data and the Oslo data






