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Overview

• R-process nucleosynthesis

• Uncertainties 

oNeutron capture rates

• Experiment

• Results

• Future plans
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Open questions: What is the site of the r-process?

Credit: Erin O’Donnell, MSU

Credit: NASA Goddard

Neutron Star Merger?

Core Collapse Supernova?
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r-process calculations

M. Mumpower, J. Cass, G. Passucci, R. Surman, A. Aprahamian, AIP Adv. 4, 041009 (2014)

neutron star merger

hot wind

cold wind

• Abundance pattern is different 

for the different astrophysical 

scenarios.

• Does one of them reproduce 

the observed abundances best?

• Why can’t we tell?
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Nuclear Physics Uncertainties: (n,γ)

Surman and Engel PRC (2001)

Monte-Carlo variations of (n,γ) rates 

within a factor 100.  
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Current (n,γ) measurements
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Neutron Capture – Uncertainties

(n,γ)

γ

(A-1, Z)

(A, Z)

Hauser – Feshbach

• Nuclear Level Density
Constant T+Fermi gas, back-shifted Fermi 

gas, superfluid, microscopic

• γ-ray strength function
Generalized Lorentzian, Brink-Axel, 

various tables

• Optical model potential
Phenomenological, Semi-microscopic

Level density

strength functionγ-strength function

ALL
OMP
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95Sr(n,γ)96Sr
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Traditional Oslo method

• Reaction based

• Applicable closer to stability

• Populate the compound nucleus 
of interest through a transfer or 
inelastic scattering

• Extract level density and γ-ray 
strength function

• Calculate “semi-experimental” 
(n,γ) cross section

• Excellent agreement with 
measured (n,γ) reaction cross 
section

T.G. Tornyi, M. Guttormsen,et al.,  PRC2014
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Neutron Capture – β-Oslo

(n,γ) β-

(A-1, Z)

(A, Z)

(A, Z-1)

γ

• Populate the compound nucleus via β-decay

• Spin selectivity – correct for it

• Extract level density and γ-ray strength function

• Advantage: Can reach (n,γ) reactions where beam intensity is 1 pps.

Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014
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Experimental techniques

Fast BeamsFast Beams Gas StopperGas Stopper Stopped beamsStopped beams Reaccelerated BeamsReaccelerated Beams

ReAccelerator Facility 

Gas Stopper

A1900 
Fragment 
Separator

K1200 
Cyclotron

K500 
Cyclotron

SuN
β-decay 
experiments 
with fast 
beams

20 meter

ReA3 
Hall

SuN
β-decay 
experiments 
with 
“stopped” 
beams
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Summing NaI - SuN

45 mm

16’’

�16x16 inch 
�45 mm borehole
�2 pieces
�8 segments
�24 PMTs
� Efficiency > 85% for 1 MeV

A. Simon, S.J. Quinn, A.S., et al., Nucl. Instr. Meth A 703, 16 (2013)

Ex= Eγ1 + Eγ2 + Eγ3 + Eγ4 + ...
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Proof-of-principle: 75Ge(n,γ)76Ge

(n,γ) β-

Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014

76Ga: T1/2 = 32.6 s
Qβ- = 7.0 MeV
Sn (76Ge) = 9.4 MeV
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Proof-of-principle: 75Ge(n,γ)76Ge
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Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014
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Proof-of-principle: 75Ge(n,γ)76Ge

 
P(Eγ ,Ex ) = ρ(Ex − Eγ )T (Eγ )

Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014

γ
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Normalizations

• Functional form of level density 
and strength function

• Three normalization points
– Low-energy level density.
– Level density at Sn.
– Average radiative width at Sn.

• 〉 (Sn) from 
– Systematics
– Microscopic calculations

• <℘> normalized from 
systematics

Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014
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Results: 75Ge(n,γ)76Ge 

Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014
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Weak r-process measurements
R. Surman, et al., , AIP Advances 4, 041008 (2014) 

70Co

70Co

70Co: T1/2 = 108 ms
Qβ- = 12.3 MeV
Sn (70Ni) = 7.3 MeV
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Applicability

• Wide range of applicability

• Short lifetimes

• Low production rates

• Bounded by 
– Q values
– Delayed neutron emission
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