Measuring Neutron Capture Cross Sections on s-Process Radioactive Nuclei

Anton Tonchev

J. Escher (LLNL), N. Scielzo (LLNL), N. Tsoneva (Giessen)

Lawrence Livermore National Laboratory

5th Workshop on Nuclear Level Density and Gamma Strength Oslo, May 18 - 22, 2015

LLNL-PRES-670315

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Outline

- Low-energy dipole strength: a key to understand decay mechanism for capture reactions
- Experimental techniques
- Experimental results for capture cross-section measurements on *s*-process branching point nucleus: ⁸⁵Kr, ⁷⁵Ge, and ²⁰⁵Pb
- Summary

Neutron Capture on s-Process Nuclei

A is stable and A-1 is a s-process branching point nucleus

Neutron Capture on s-Process Nuclei

Leading indirect techniques:

- Nuclear Resonance Fluorescence (NRF)
- > β -delayed γ and neutron spectra
- Surrogate method

A is stable and A-1 is a s-process branching point nucleus

Calculating (n, y) Cross Sections

Capture reaction

n+target → population of compound nucleus (CN)
 Subsequent decay by competition of γ emission and neutron evaporation

Theoretical description

Hauser-Feshbach (HF) formalism:

$$\sigma_{n\gamma} = \frac{\pi}{k_n^2} \sum_{J,\pi} g_J \frac{T_{\gamma}(E, J, \pi) T_n(E, J, \pi)}{T_{\text{tot}}}$$

where

 T_{γ} is the gamma transmission coefficient

$$T_{\gamma}(E, J, \pi) = \sum_{X,\lambda} \int T_{X\lambda}(\epsilon_{\gamma}) \rho(E - \epsilon_{\gamma}) d\epsilon_{\gamma}$$

 T_n is the neutron transmission coefficient

and
$$T_{tot} = T_n + T_p + T_d + T_t + T_\alpha + T_\gamma$$

Challenge for calculations

Need accurate description of:

- γ–ray strength function (γSF)
- level densities (LDs)
- discrete low-lying levels with J^{π} , branching ratios
 - esp. important for isomers!
- optical model for n+target: (in decent shape ~10% below 1-2 MeV, 3-5% above)

Calculating (n,y) Cross Sections from Photon Scattering

Capture reaction

n+target → population of compound nucleus (CN)
 Subsequent decay by competition of γ emission and neutron evaporation

Theoretical description

Hauser-Feshbach (HF) formalism:

$$\sigma_{n\gamma} = \frac{\pi}{k_n^2} \sum_{J,\pi} g_J \frac{T_{\gamma}(E, J, \pi) T_n(E, J, \pi)}{T_{\text{tot}}}$$

where

 T_{γ} is the gamma transmission coefficient

$$T_{\gamma}(E, J, \pi) = \sum_{X,\lambda} \int T_{X\lambda}(\epsilon_{\gamma}) \rho(E - \epsilon_{\gamma}) d\epsilon_{\gamma}$$

 T_n is the neutron transmission coefficient

and
$$T_{tot} = T_n + T_p + T_d + T_t + T_\alpha + T_\gamma$$

Constrain on **ySF**

$$T_{X\lambda}(\epsilon_{\gamma}) = 2\pi \epsilon_{\gamma}^{(2\lambda+1)} f_{X\lambda}(\epsilon_{\gamma})$$
$$T_{EI}(E_{\gamma}) = 2\pi E_{\gamma}^{3} f_{EI}(E_{\gamma}) \quad \text{(electric dipole)}$$

 $\sigma_{abs}(E_{\gamma})$: measured directly with real photons $\sigma_{abs}(E_{\gamma}) = 3(\pi \hbar c)^2 E_{\gamma} f_{E1}^{\uparrow}(E_{\gamma})$

Measuring the Nuclear Dipole Response using Real Photons

N. Pietralla, A. Tonchev at al. PRL 88 (2001) 012502

Photon Scattering from Light-Mass Nuclei

Photon Scattering from Mid- and Heavy-Mass Nuclei

10

Constructed the New γ^3 Setup at the High Intensity Gamma-Ray Source Facility (HIGS) at Duke University

HIGS facility

Schematic drawing of the γ³ experimental setup

 γ^3 Setup: Array of four LaBr, four HPGe, and four neutron detectors.

Provides:

Absolute and model independent crosssection measurements below or above the neutron separation energy, hence direct measurement of the gamma-ray strength function.

B. Loher, V. Derya et al. NIMA 723, 136 (2013)

Cross-Section Measurements of the ⁸⁶Kr(γ,n) Reaction to Probe the *s*-Process Branching at ⁸⁵Kr

- The branching at ⁸⁵Kr is significant for s-process modeling.
- This branching is independent of temperature and depends only on the neutron density.
- Helps to constrain the neutron density parameter in models of AGB stars.
- > 85 Kr (T_{1/2} = 10.76 y) neutron capture not measured.

Solution

Measure 86 Kr(γ , γ ') 86 Kr and inverse 86 Kr(γ ,n) 85 Kr reaction

Reproduce experimental results with the statistical model calculations

Apply same parameter set for (n, γ) cross section

β -Delayed γ Spectra from Total Absorption Spectrometer (TAS)

PRL 113, 232502 (2014)

Novel technique for Constraining *r*-Process (n, γ) Reaction Rates

A. Spyrou,^{1,2,3,*} S. N. Liddick,^{1,4,†} A. C. Larsen,^{5,‡} M. Guttormsen,⁵ K. Cooper,^{1,4} A. C. Dombos,^{1,2,3} D. J. Morrissey,^{1,4} F. Naqvi,¹ G. Perdikakis,^{6,1,3} S. J. Quinn,^{1,7,3} T. Renstrøm,⁵ J. A. Rodriguez,¹ A. Simon,^{1,8} C. S. Sumithrarachchi,¹ and R. G. T. Zegers^{1,7,3}

TECHIQUE USED:

Combine β -decay and γ -emission measurements using γ -ray total absorption spectrometer (TAS). Analyse γ -ray spectra using the 'Oslo'-method.

OBJECTIVE:

"Experimental" determination of the nuclear level density (NLD) and the γ -ray strength function (γ SF). These two quantities (and the nucleon-nucleus optical model potential) are essential for calculating the neutron-capture cross section.

RESULT:

Proof-of-principle application to 75 Ge(n, γ) shows good agreement with known result.

OPEN QUESTIONS:

1. Approach made heavy use of available nuclear structure information. How much independent information does this type of measurement yield?

2. Only the functional form of the NLD and γ SF are obtained from the primary γ -ray spectra from 1.2 – 5.8 MeV.

3. The slope and absolute value must be determined by other means.

Nuclear Resonance Fluorescence technique (NRF) to measure the nuclear dipole response

Dipole response of ⁷⁶Ge between 4.5 and 9 MeV

R. S. Ilieva,^{1,2} P. Humby,^{1,2,*} N. Cooper,¹ V. Werner,^{1,3} G. Rusev,^{4,5,†} C. Bernards,¹ J. Beller,³ J. Bliss,³ B. P. Crider,⁶ P. M. Goddard,² J. Isaak,³ J.H. Kelly,⁵ B. Löher,⁷ E. E. Peters,⁸ N. Pietralla,³ C. Romig,³ D. Savran,⁷ M. Scheck,^{3,‡} A. P. Tonchev,^{4,§} W. Tornow,^{4,5} S. W. Yates,^{6,8} and M. Zweidinger³

(Submitted to PRC)

TECHIQUE USED:

Nuclear resonance fluorescence technique.

OBJECTIVE:

Direct measurements of the ptotoabsorption cross section below the neutron separation energy, hence direct measure of the γ -ray strength function (γ SF) needed for inversed (n, γ) calculations.

RESULT:

Photoabsorption cross section of ${}^{76}\text{Ge}(\gamma,\gamma')$ from 4 to Sn (9.4 MeV).

OPEN QUESTIONS:

This approach is applicable for systems where A is stable and A-1 is a radioactive nucleus.

Reaction Mechanism

First Results

- 1. γ -ray strength function of ⁷⁶Ge measured by the β -Oslo methods is slightly lower compared to the photonscattering or NRF experiment.
- 2. γ -strength function obtained by the photonscattering method show more structural effect compared to the one obtained via the β -Oslo methods.

Fine Structure of the Electromagnetic Dipole Strength in ²⁰⁶Pb

Fine Structure of the Electromagnetic Dipole Strength in ²⁰⁶Pb

N. Tsoneva, Preliminary QPM calculations

Summary and Future Work

- 1. Good agreement is obtained for capture cross-section measurement on ⁷⁵Ge from the NRF and β -Oslo methods.
- 2. Constraining the level density of ⁷⁶Ge by using the discrete levels at low excitation energy and information from neutron-resonance experiments at the neutron separation energy Sn on neighboring germanium isotopes. Use the same normalization data as in the β -Oslo approach.
- 3. Plug the γ -ray strength function of ⁷⁶Ge directly into the Hauser-Feshbach calculations to compare with the capture cross section on ⁷⁵Ge nucleus obtained by the β -Oslo methods. Define the uncertainty of the predicted capture cross section based on both methods.

Spare Slides

N. Tsoneva, preliminary results

Investigation of Photon-Strength Functions: ⁹⁰Zr case

 Photon-strength function describes energy distribution of photon emission from high-energy states.

 $f(E_{\gamma}) = <\Gamma_{\gamma} / D E_{\gamma}^{3} >$

Importance: Astrophysical network calculations; new fast nuclear reactors, statistical models.

Preliminary results

• E1 is the dominant multipolarity transition

 Primary transitions are strongly dictated by the microscopic properties o the low-lying levels.

> > PSF is not smooth curve below the B_n and $E_{\gamma} > 4$ MeV.

Parity Measurements with a Linear Polarized Photon Beams

Fine Structure of the Electromagnetic Dipole Strength in ²⁰⁶Pb

Calculating (n,g) Cross Sections

Capture reaction

n+target \rightarrow population of compound nucleus (CN) Subsequent decay by competition of γ emission and

Theoretical description

Hauser-Feshbach (HF) formalism:

$$\sigma_{n\gamma} = \frac{\pi}{k_n^2} \sum_{J,\pi} g_J \frac{T_{\gamma}(E, J, \pi) T_n(E, J, \pi)}{T_{\text{tot}}}$$

where

 T_{γ} is the gamma transmission coefficient

$$T_{\gamma}(E, J, \pi) = \sum_{X, \lambda} \int T_{X\lambda}(\epsilon_{\gamma}) \rho(E - \epsilon_{\gamma}) d\epsilon_{\gamma}$$

 T_n is the neutron transmission coefficient

and
$$T_{tot} = T_n + T_p + T_d + T_t + T_\alpha + T_\gamma$$

In the case of (n, γ):

- $T_{\gamma} << T_n + T_p + T_d + T_t + T_{\alpha}$ ignore T_{γ} in T_{tot}
- T_p , T_d , T_t , T_α all small below thresholds So $T_n T_\gamma / T_n$ reduces to T_γ

$$\sigma_{n\gamma} = \frac{\pi}{k_n^2} \sum_{J,\pi} g_J \sum_{X,\lambda} \int T_{X\lambda}(\epsilon_{\gamma}) \rho(E - \epsilon_{\gamma}) d\epsilon_{\gamma}$$
Product of vSE and D₂₇

Measuring the ¹⁴²Ce(g,n) reaction to infer the inverse ¹⁴¹Ce(n, g) reaction

Proof-of-Principle Experiment on ¹⁴¹Ce radioactive target

PHYSICAL	REVIEW	C 89,	035803	(201

Determination of the ${}^{142}Ce(\gamma, n)$ cross section using quasi-monoenergetic Compton backscattered γ rays

A. Sauerwein, ^{1,*} K. Sonnabend, ¹ M. Fritzsche, ² J. Glorius, ¹ E. Kwan, ^{3,4,+} N. Pietralla, ² C. Romig, ² G. Rusev, ^{3,4,4} D. Savran, ^{3,0}
L. Schnorrenberger, ² A. P. Tonchev, ^{3,4,§} W. Tornow, ^{3,4} and H. R. Weller ^{3,4}
¹ Institut für Angewandte Physik, Goethe Universität Frankfurt am Main, D-60438 Frankfurt am Main, Germany
² Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
³ Department of Physics, Duke University, Durham, North Carolina 27708, USA
⁴ Triangle Universities Nuclear Laboratory (TUNL), Durham, North Carolina 27708, USA
⁵ ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung, GmbH, D-64291 Darmstadt,
Germany
⁶ Frankfurt Institute for Advanced Studies FIAS, D-60438 Frankfurt am Main, Germany
(Received 2 January 2014; published 7 March 2014)

Knowing the energy dependence of (γ,n) cross sections is mandatory to predict the abundances of heavy elements using astrophysical models. The data can be applied directly or used to constrain the cross section of the inverse (n,γ) reaction.

140Pr

3.39 M

e: 100.00%

139Ce

137.641 D

(c) 100.00%

138La

.02E+11 Y

0.08881%

€: 65.60%

8-: 34.40%

141Pr

STABLE

100%

140Ce

STABLE

88.450%

139La

STABLE

99.9119%

142Pr

19.12 H

8-:99.98%

e: 0.02%

141Ce

32.508 D

8-:100.00%

140La

1.67855 D

β-: 100.00%

143Pr

13.57 D

β-: 100.00%

142Ce

>5E+16 Y

141La

3.92 H

β-: 100.00%

11.114%

2β-

144Pr

17.28 M

B-: 100.00%

143Ce

33.039 H

β-: 100.00%

142La

91.1 M

β-: 100.00%

2