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NUCLEOSYNTHESIS OF HEAVIER ELEMENTS
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Heavier elements ( Z> 26-28) can be assembled within stars by
neutron capture processes.
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Two main neutron
capture processes

S- process - slow
neutron capture,
low neutron densities

p ~10%cm3
life time
t~1-10years

r - process - rapid
neutron captures
p ~102%/cm3

..other processes
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Characteristic Response of an Atomic Nucleus to EM Radiation

Two-phonon Pygmy-quadrupole Pygmy-dipole Giant M1

Scissors mode excitation resonance resonance resonance Giant Dipole Resonance
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Moderate and Heavy nuclei

Theoretical prediction of Pygmy Quadrupole Resonance: N. Tsoneva, H. Lenske, Phys. Lett. B 695 (2011) 174.
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THE THEORETICAL MODEL

Quasiparticle-Phonon Model: V. 6. Soloviev: Theory of Atomic Nuclei: Quasiparticles and Phonons (Bristol, 1992)

N. Tsoneva, H. Lenske, Ch. Stoyanov, Phys. Lett. B 586 (2004) 213
N. Tsoneva, H. Lenske, Phys. Rev. C 77 (2008) 024321
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Nuclear Ground State Excited states

deformations, vibrations, rotations
Single-Particle States H,Ph - multipole interaction in the
Phenomenological density particle-hole channel: =~

: | h HsyPh - spin-multipole interaction in the

functional approach based on a fully particle-hole channel:
microscopic self-consistent Skyrme H,P - multipole interaction in the
Hartree-Fock-Bogol jubov (HFB) theory particle-particle channel
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Pairing and Quasiparticle States (r=r1 ﬂ,( VR (0, )Y (0 7)

RI(r, ") =R, (MR, (")
T = Ojsoscalar interaction

T = 1 isovector interaction
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Phenomenological Density Functional Approach for Nuclear Ground States

P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864; W. Kohn, L. J. Sham, Phys. Rev. 140 (1965) A 1133.

N. Tsoneva, H. Lenske, PRC 77 (2008) 024321

The total binding energy B(A) is expressed as an integral over an energy-density functional

B = 3 [d'r(7,(0)+5 PU,(0) |+ EL (k.p)
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neutron skin thickness
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or [fm]

The thickness of the neutron skin scaled with the

difference of the Fermi levels of the protons and
neutrons Aeg corrected for the Coulomb barrier.

Even-Even Neutron-Rich Nucleus
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a measure of how loosely the neutrons are
bound compared to the protons.

Accr = (S, - S)2 + B [MeV] -|

Szp. Szn = two proton (neutron) separation energies,
E. - the height of the Coulomb barrier at the nuclear radius
(CCF=Coulomb Corrected Fermi energy)
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r) [fm™]

Calculations of Ground State Densities in Z=50, N=50,82 Nuclei
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N. Tsoneva, H. Lenske, Phys. Rev. C 77 (2008) 024321
R. Schwengner et al., Phys. Rev. C 78 (2008) 064314
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THEORY OF NUCLEAR EXCITATIONS

Quasiparticle-Phonon Model: V. 6. Soloviev: Theory of Atomic Nuclei: Quasiparticles and Phonons (Bristol, 1992)

The QPM basis is built of phonons:

1
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Z — labels the number of the QRPA state

The phonons are not ‘pure’ bosons: Pauli principle

QRPA equations are solved: <:>

[H Q/lm ] /lm Qzﬂz
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ANHARMONICITIES IN NUCLEAR WAVE FUNCTION

For even-even nucleus the QPM wave functions are a mixture of
one-, two- and three-phonon components
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M. Grinberg, Ch. Stoyanov, Nucl. Phys. A. 573 (1994) 231
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NUCLEAR SPECTROSCOPY
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TWO-PHONON 1- STATES

U. Kneissl, N. Pietralla, and A. Zilges, J. Phys. G: Nucl.Part.Phys. 32, R217 (2006)

N. Tsoneva, H. Lenske, Ch. Stoyanov, Phys. Lett. B 586 (2004) 213 STable and uns’rable Sn I'IUClel
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The data are taken from J. Bryssinck et al., Phys. Rev. C59(1999)1930
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Systematic studies of two-phonon states in N=82 isotones
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Parity Measurements with Polarized Photon Beams of

Low-energy Dipole Excitations at HIyS, Duke University

A. Tonchev et al., Phys. Rev. Lett. 104, 072501 (2010)

o,(M1)/o,(ET) ~ 3%
100 ?léib' T T e e First systematiq spin and _parity
13884 . o (M) ] measurements in comparison
10F — with QPM calculations:

1k . . 138Ba verified for the first time that the
= ; : pygmy dipole resonance is
E o1 H -II . predominantly electric dipole in nature.
o s

* The fine structure of the M1 spin-flip
mode is explained.

 Separation of the PDR to isoscalar and
isovector. Interplay between the GDR
and the PDR at higher energies.

il

7 8 9
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TABLE I. E1 and M1 parameters deduced in '*Ba below the neutron-separation energy in comparison with the QPM calculations.

(Egy) [MeV] SB(EL) T[e fm?] (Eyq [MeV] SBMI)T (3] EWSR, [%]
Experimental 6.7 0.96(18) 6.9 2.5(6) 1.3
QPM 7.3 1.22 6.9% 20° 1.8

4.1 MeV < E* < 8.5 MeV.
N.Tsoneva, OSLO15
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Spin and Parity Determination at HlyS, Duke University, USA

G. Rusey, N. Tsoneva, F. Donau, S. Frauendorf, R. Schwengner, A. P.
Tonchey, A. S. Adekola, S. L. Hammond, J. H. Kelley, E. Kwan, H. Lenske, W.
Tornow, and A. Wagner, Phys. Rev. Lett. 110, 022503 (2013).

‘Explaining the fragmentation pattern and the
dynamics of the ‘quenching’.

* Multi-particle multi-hole effects increase
strongly the orbital part of the magnetic
moment.

* Prediction of M1 strength at and above the
neutron threshold.

SB(M1)eyp! = 4.5(6) u? ZB(M1)gey| = 4.6 12
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Polarized photon scattering off 52Cr:

De‘l'er'mmmg T Tl gD NS S 1§ B crishichayan et al., PRC 91, 044328 (2015)
B ooy BELigs. — 1o dores 1= 13 % 107 & fm? 5y = \/{ 2 - \/{ 2>, =0.056 fm
= |PDR: TRK sum rule ~ 0.1%
500 6000 7000 8000 9000 10000 0 000 G000 7000 2000 Q000 10000

100] cumulative E1strength .o — | cumulative M1 strength g
B 1 P
= .r“":’.i —Exp | m-f-;____——f——r/ﬁr’ —Exp ]
e T — GPM | S aPm
ol ] t
= & S 0.8 __
w 10- ‘ ‘ = 04- ‘ :

@ G: L |l.| | | u gﬂ 0.0 | || |

55'_ Exp i 0.8 B _
ﬂ- ] ' 0.4- 1
04— FEETE B | B ol B | || - H _

500 600 70 m00 | w00 | 100 500 600 7000 800 9000 10000

Energy (keV) Energy (keV)

N.Tsoneva, OSLO15



LOW-ENERGY ELECTRIC DIPOLE RESPONSE IN !20Sn TECHNISCHE
extracted from proton inelastic scattering experiments UNIVERSITAT
120gn(p, p"): A.M.Krumbholz, P.von Neumann-Cosel, T.Hashimoto, et al.,PLB 744, 7 (2015). DARMSTADT

1208n(y,y‘): B. Ozel-Tashenoy, et al., PRC 90, 024304 (2014).

B(E1) strength (a. u.)
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(¥, ¥ corr [39] (2014) 0.228(43)
| (¥, ¥ )corr + unresolved [39] 0.348(76)
QPM Darmstadt [41] (2014) 0.553
QPM Giessen [7] (2008) 1.364
2 phonon RQTBA [62] (2013) 2.344
2q + phonon RQTBA [61] (2007) 9.494
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FIRST SYSTEMATIC STUDIES OF THE PDR IN N=50 ISOTONES

Proton number increasing, neutron skin decreasing
S. Volz et al., Nucl. Phys. A, 779 (2006) 1-20; .
D. Savran et al.,PRL 100, (2008) 232501; N= 50, 82 isotones
R. Schwengner et al, Phys. Rev. C 78 (2008) 064314;

R. Schwengner et al, Phys. Rev. C 87, 024306 (2013) .

Neutron number Increasing, neutron skin Increasing

N. Tsoneva, H. Lenske, Ch. Stoyanov, Phys. Lett. B 586 (2004) 213

N. Tsoneva, H. Lenske, Phys. Rev. C 77 (2008) 024321; Z=50 82 chains
A. Tonchev et al.. to be submitted. !

Theoretical prediction of Pygmy Quadrupole Resonance

N. Tsoneva, H. Lenske, Phys. Lett. B 695 (2011). Z=50 isotopes
*Kr ] : or = \/i r2 >, — \/f:: r2 >, :
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R. Schwengner et al., Phys. Rev. C 87, 024306 (2013) N.Tsoneva, OSLO15



DYNAMICS OF NUCLEAR EXCITATIONS IN N=50 ISOTONES

exp: R. Schwengner et al., First systematic photon-scattering experiments in N=50 nuclei: using bremsstrahlung produced with
electron beams at the linear accelerator ELBE, Rossendorf and quasi-monoenergetic y - rays at HIyS facility, Duke university.

N. Tsoneva, S. Goriely, H. Lenske, R.Schwengner, PRC 91, 044318 (2015).
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Total cross section of °Kr9 (n,y)8Kr reaction
R. Raut et al., Phys. Rev. Lett. 111, 112501 (2013).

A way to investigate 2°Kr branching point and the s-process: 8Kr (t~ 10.57 Y)
ground state is a branching point and thus a bridge for the production of 8Kr at low neutron densities.

777777 ' 1000 oo oo nnd
. 26 85 otm R.Rautetal., 1
A Kr(y,n) Ki¥ ™ PRL 111, 112501 (2013).
50 - 86 ‘ 85. . m R. Raut et al., N
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o) 30 F . i
E £ 10
o 20 —_— g
b [
10 ‘ ‘ +§¢¢¢ [
b g4 ' T
0 o ...‘.+, s
(1Y) ——
_10 1 1 1 1 1 | 1 1 1
4 5 6 7 8 0.1
E [MeV] .

N.Tsoneva, OSLO15



of the 8 Kr(n,y)3Kr, 87Sr(n,v)88Sr, 89Zr(n,y)°°Zr and °'Mo(n,y)*2Mo reactions calculated with TALYS

NEUTRON CAPTURE CROSS SECTIONS

using EDF+QRPA, HFB+QRPA and three-phonon QPM strength functions.

N SSKr(n,y)SéKr
[‘ ~ 50% increase

N

N 4 “RRr. 1 \
——EDF+QPM TR

— —EDF+QRPA (PDR in)
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N. Tsoneva, S. Goriely, H. Lenske, R.Schwengner, PRC 91, 044318 (2015).

87Sr(n:{)ssSr

'."&-..__-- i '.'“ : — ]
R g T [.]" 22% increase |

Walter (1984)
Macklin et al. (1967)

~001 o1

91Mo(11,~{)9:Mo

[’]" 10% increase™

“6o01 01
E [MeV]
n

For 85Kr(n,y)BGKr cross sections, the hashed area corresponds to the cross section determined with the experimental
strength as derived in R. Raut et al., Phys. Rev. Lett. 111, 112501 (2013).
For 87Sr(n,y)8Sr, TALYS cross sections are compared with experimental data G. Walter, Kernforschungszentrum

Karlsruhe Reports No.3706 (1984); R.L. Macklin and J.H. Gibbons, Phys. Rev. 159, 1007 (1967).
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Proton capture cross section of the 8 Y(p,y)?°Zr calculated with TALYS using EDF

+QRPA, HFB+QRPA and three-phonon QPM strength functions.

N. Tsoneva, S. Goriely, H. Lenske, R.Schwengner, PRC 91, 044318 (2015).
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Maxwellian-averaged cross sections (in mb) at thermal energy of kT=30 KeV.

' ) ' " ' ' ' N. Tsoneva, S. Goriely, H. Lenske, R.Schwengner, PRC 91, 044318 (2015).
30F  o%Kr(ny)*Kr T
S 25¢ -
c
-..g 20+ *.%Sr(n,y)®sr .
2
T
08: or 9 70(n)*°Zr I
& 10l wi}mm .
5 1 L 1 L | L 1
36 38 40 42
z
Exp. EDF + QFM EDF 4+ QEFA (FDE in) EDF + QEPA (FDR ex) HFE + QRPA (BSkT)
“Kr(n,y )" Kr 8315 5] 104.0 531 373 59.0
ET"SJ'[H,}r’J'E‘SS]' v+ 4[7] 1031 54.2 44.4 621
" Zrin, ¥ 7 - 2243 170.4 152.1 159.8
“Mc:n;ri,}a]';'?hf[t: - 3498 1748 158.4 195.0

[5] R. Raut et al., PRL 111, 112501 (2013).
[7] Z. Y. Bao et al., At. Data Nucl. Data Tables 76, 70 (2000).
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OBSERVATION OF DOUBLE PYGMY RESONANCES IN 19Pt

—=— (d.p)'**Pt, Giacoppo et al preliminary
—+— *pt(y.n) +"**Pt(y,2n), Goryachev et al.
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Conclusions

A new theoretical method based on Density Functional Theory and
Quasiparticle-Phonon Model is developed.

Presently, this is the only existing method allowing for sufficiently large
configuration space such that a unified descr'lp*hon of low-ei gy single-particle,
multiple-phonon states and the giant resonance- ‘s

' [ |

Different a

- systematic strengths reveal new mode of nuclear
excitation - sonance as a unique mode of excitation correlated
with the size of the neutron skin.

theoretical prediction of a higher order multipole pygmy resonance -
Pygmy Quadrupole Resonance.

studies of low-energy O* and multi-phonon states.

description of the fragmentation pattern of E1, E2 and M1 strengths

nuclear structure input for astrophysics
N.Tsoneva, OSLO15



