

Gamma-Ray Emission Spectra as a Constraint on Calculations of $^{234,236,238}\text{U}$ Neutron-Capture Cross Sections

J.L. Ullmann, T. Kawano, T.A. Bredeweg, B. Baramsai, A.J. Couture, R.C. Haight,
M. Jandel, S. Mosby, J.M. O'Donnell, R.S. Rundberg, D.J. Vieira, J.B. Wilhelmy,

Los Alamos National Laboratory

C.-Y. Wu, J.A. Becker

Lawrence Livermore National Laboratory

M. Krticka

Charles University, Prague

Fifth Workshop on Nuclear Level Density and Gamma Strength.
Oslo, Norway, May 18 – 22, 2015

LA-UR-15-23962

Capture cross-sections and spectra important

- Neutron capture cross sections in the “continuum” region $>\approx 1$ keV and gamma-emission spectra of importance to basic science and many applied fields
 - Defense
 - Nuclear security, safeguards, and forensics
 - Nuclear power
 - r- and s- process nucleosynthesis
- Careful measurements have been made on most common stable nuclides
- But must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides
- Must benchmark calculations against measurements
 - Cross sections
 - Another observable: gamma-ray spectrum
 - $\langle \Gamma_Y \rangle$

Digression: Some theory background

Ultimate Goal: Calculate capture cross sections
(Especially true – unstable nuclides)

Capture cross section calculated by Hauser-Feshbach approximation;

$$\sigma_\gamma \approx \frac{T_{in}}{k^2} \pi W \frac{\sum_{\text{Discrete}} T_{out}(\varepsilon_\gamma) + \int_{E_{crit}}^{T_{new}+Q} T_{out}(E - E_x) \rho(E_x) dE_x}{\sum T_{out}}$$
$$T_{XL}(\varepsilon_\gamma) = 2\pi \varepsilon_\gamma^{2L+1} f_{XL}(\varepsilon_\gamma)$$

Shape usually OK, magnitude often X2 to X10 error

Strength function normalized to measured average capture width $\langle \Gamma_\gamma \rangle$
> Need to know $\langle \Gamma_\gamma \rangle$!!

$$\frac{2\pi}{D_o} \langle \Gamma_\gamma \rangle = C \int_0^E d\varepsilon_\gamma (2\pi \varepsilon_\gamma^3) f_{E1}(\varepsilon_\gamma) \rho(E - \varepsilon_\gamma)$$

The DANCE array

Half of DANCE array with ${}^6\text{LiH}$ ball

Detector for Advanced Neutron Capture Experiments

- 162 segments with 4 different shape crystals (160 segments with crystals)
- Calorimetric detector (nearly 4π) - detects full energy of decay cascade
- High efficiency and high neutron flux allows measurements on milligram samples
- Highly segmented to allow detection of radioactive targets
- Inner radius = 17 cm
- Crystal depth = 15 cm
- State-of-the-art fast transient digitizers for data acquisition - CAEN VX1730B
- ${}^6\text{LiH}$ inner sphere to absorb scattered neutrons

Neutron Capture

Detect ALL gammas-

- Summed energy is Q value (Sn) + neutron cm T
- $E_x = T_n(1+M_n/M_A)+Q$

Neutron Flux Measurement

3 Neutron Monitors

${}^6\text{Li}(\text{n},\text{at})$ 22.60 m

${}^{10}\text{B}(\text{n},\alpha)$ 22.76 m

${}^{235}\text{U}(\text{n},\text{f})$ 22.82 m

Flux from ${}^6\text{Li}$:

$\sim 547 E^{-1.04}$

$\text{n/cm}^2/\text{eV/To}$

(at monitor)

$I = 100 \mu\text{A}$

(5-Aug-10)

Monitors are 2 m downstream of target

- Attenuation by target
- Geometric solid angle
- Targets often < beam

Long Flux Monitors

$\Delta E/E = 0.05$

$\sim/d6/replay/sum26503.root$

Los Alamos Neutron Science Center (LANSCE)

EST. 1943

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Summary – measurements on $^{234,236,238}\text{U}(\text{n},\gamma)$

- Gamma-ray spectrum measurements from resolved resonances made with 1 -2 mg/cm² thick targets
- Cross sections > 1 keV measured using thicker targets

Uranium Measurements

Isotope	234	236	238
Q window (MeV)	5.30 ± 0.50	5.13 ± 0.50	4.81 ± 0.65
γ -spectrum target	1.0 mg/cm ²	1.29 mg/cm ²	2.27 mg/cm ²
σ target	(2015)	2014 – Analysis In progress	48 mg/cm ² PRC 89,034603

Uranium s-wave resonances

^{238}U Background subtraction – 36 eV resonance (M=2)

Principal
Backgrounds

- β^- decay ^{226}Ra chain
 - ^{214}Bi $Q=3.27$ MeV
 - ^{214}Pb $Q=1.03$ MeV

- $\text{Ba}(n,\gamma)$
 - Scattered neutrons
 - ^{138}Ba $Q=4.72$ MeV

Multiplicity = 2 Gamma ray spectra

Calculate capture gamma-ray spectrum

Formula for spectrum - Monte Carlo DICEBOX algorithm

Level density - Constant Temperature

Parameters from von Egidy and Bucurescu Phys Rev C 72, 044311 (2005)

Radiative strength function - Simplest model is E1 only

- Parameters usually taken from (Y,n)
- Q value (Sn) ≈ 4.81 MeV (^{238}U)
- What is function between GS and Sn?
- Different models - (Kopecky and Uhl, Phys Rev C41, 1941 (1990))
- Use "Modified Generalized Lorentzian" (MGLO)

Kroll, Phys. Rev. C88, 034317 (2013)

$$f(\varepsilon_\gamma) = \frac{\sigma_r \Gamma_r}{3\pi^2(\hbar c)^2} \left[\frac{\varepsilon_\gamma \Gamma_\gamma(\varepsilon_\gamma, T)}{(\varepsilon_\gamma^2 - \varepsilon_r^2)^2 + \varepsilon_\gamma^2 \Gamma_\gamma^2(\varepsilon_\gamma, T)} + \frac{(0.7)4\pi^2 \Gamma_r T^2}{\varepsilon_r^5} \right]$$

Calculate capture gamma-ray spectrum

Nucleus rich in different collective modes of vibration

M1 Scissors

M1 Gamow-Teller

E1 Pygmy

Usually parameterized as "Standard Lorentzian" (SLO)

$$f(\varepsilon_\gamma) = \frac{1}{3\pi^2(\hbar c)^2} \frac{\sigma_r \varepsilon_\gamma \Gamma_r^2}{(\varepsilon_\gamma^2 - \varepsilon_r^2)^2 + \varepsilon_\gamma^2 \Gamma_r^2}$$

- Lots of work to characterize these modes using different probes
Probes have varying sensitivity
- Parameters determined by "Oslo Method" appear to provide consistent description of neutron capture (MK)
- Comparing results from different probes leads to question:
"Is there a universal strength function?"

Gamma spectrum provides constraint on RSF

Test radiative strength function by “Spectrum Fitting Method”

- Assume form of Radiative Strength Function
- Generate gamma cascades using Monte Carlo
 - DICEBOX (F. Bečvář, NIM A **417**, **434** (1998).)
 - Uses level density above E_{crit} (~ 0.5 MeV)
 - Tabulated level information below E_{crit}
- Process cascades through GEANT4 model of DANCE
 - Use formulation of Jandel
(M. Jandel, et al., NIM B **261**, 1117 (2007).)
 - Based on original model by Reifarth and Heil
(M. Heil, R. Reifarth, et al., NIM A **459**, 229(2001).)
- Compare to observed gamma-ray spectra - qualitative!!
 - Consider low-lying resolved resonances and gate on Q-value (summed energy) spectrum to reduce backgrounds
 - Background subtraction still needed

^{238}U Capture Results – $M_{\text{cl}} = 2$

$^{238}\text{U}(\text{n},\gamma) M_{\text{cl}}=2$ Spectrum

	E1	σ_1	Γ_1	E2	σ_2	Γ_2
GDR Berman (RIPL-3)	11.28	325.0	2.48	13.73	384.0	4.25
M1 Scissors Oslo PRL 109 (^{233}Th)	2.00	0.65	0.85	2.65	0.60	0.70
M! Scissors Oslo PRC 89 (^{237}U)	2.15	0.45	0.80	2.90	0.40	0.60
M! Spin Oslo PRC 89 (^{237}U)	6.61	7.00	4.00			
E1 Pygmy Oslo PRC 89 (^{237}U)	7.30	15.00	2.00			

$M_{cl} = 2$ Gamma-ray spectra Calculations

	E1	σ_1	Γ_1
"Consistent" M1 Scissors	2	0.60	4.7
"Consistent" M1 GT	7	3.00	4.7

+ SLO E1 GDR

Background subtraction – 1 – 10 KeV

Normalize to weak resonances

Graph

R12792 Normalization Resonances ($n=1.39$)

EST. 1943

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Cross Sections

J.L.U. et al, Phys. Rev. C 89, 034603 (2014)

Cross Sections

Results

- Shape of capture cross section vs neutron energy is not sensitive to form of strength function (although magnitude is)
- Generalized Lorentzian E1 strength function is not sufficient to describe shape of observed gamma-ray spectra
- MGLO + "Oslo M1" parameters produces quantitative agreement with measured $^{238}\text{U}(\text{n},\gamma)$ cross section.
- Additional strength at low energies (~ 3 MeV) - likely M1- is required (See also Guerrero (nTOF):
Jour. Korean Phys. Soc. **59**, 1510 (2011) (ND2010))
- Careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations
 - Kwan - NRF (E. Kwan, et al., Phys. Rev. C **83**, 041601(R)(2011))
 - M1 - (Heyde, Rev. Mod. Phys. **82**, 2365, 2010)
 - Pygmy E1 dipole

Acknowledgements

- This work benefitted from the use of the LANSCE Facility and the Manuel J. Lujan, Jr. Neutron Scattering Center
- Work performed under auspices of the U.S. Department of Energy, National Nuclear Security Administration, by:
 - Los Alamos National Security, LLC, under contract DE-AC52-06NA25396
 - Lawrence Livermore National Security, LLC, under contract DE-AC52-07NA27344
- Substantial support for graduate students was provided by the Stockpile Stewardship Academic Program of the NNSA.