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Introduction

The calculation of level densities in the presence of correlations is a
challenging many-body problem.

- Often calculated using empirical formulas.

- Mean-field approximations can miss important correlations and are
problematic in the broken symmetry phase (see talk of Paul Fanto).

The configuration-interaction (Cl) shell model is a suitable framework to
account for correlations beyond the mean field but the combinatorial increase
of the dimensionality of its model space has hindered its applications in
mid-mass and heavy nuclei.

« Conventional diagonalization methods for the shell model are limited to
spaces of dimensionality ~ 10",

The shell model Monte Carlo (SMMC) enables microscopic calculations
in spaces that are many orders of magnitude larger (~ 103%) than those
that can be treated by conventional methods.



The shell model Monte Carlo (SMMC) method

Gibbs ensemble ¢ ”" at temperature T (8=1/T) can be written as a
superposition of ensembles U of non-interacting nucleons moving in

time-dependent fields o (7)
e” =[D[c]GU,
Thermal expectation value of an observable O

Tr (Oe PHY [ D[o]Go(O)oTr U,
Tr(e—BH) ~—  [D[o]G,TrU,

(0) =
where (O), = Tr (OU,)/Tr U,

» The calculation of the integrands reduces to matrix algebra in the single-
particle space (of typical dimension ~ 100).

« The high-dimensional O integration is evaluated by Monte Carlo methods.

G.H. Lang, C.W. Johnson, S.E. Koonin, W.E. Ormand, PRC 48, 1518 (1993);
Y. Alhassid, D.J. Dean, S.E. Koonin, G.H. Lang, W.E. Ormand, PRL 72, 613 (1994).



Level density in SMMC
Nakada and Alhassid, PRL 79, 2939 (1997)

 Calculate the thermal energy E(f)=< H > versus IB and integrate
—dInZ/df = E(f) to find the partition function Z(/3).

The level density p(F) is related to the partition function by an inverse
Laplace transform:

p(E) = ;& [0 dBePPZ(B)

* The average state density is found from Z(/3) in the saddle-point
approximation:

p(E)~———e""

\ 27T’ C

S(E) = canonical entropy C = canonical heat capacity

S(EY=InZ+ BE C=-[°0E/df




Heavy nuclei (lanthanides) in SMMC

Cl shell model space:
protons: 50-82 shell plus 1f;,, ; neutrons: 82-126 shell plus 0Oh,,, and 1g,,,

Single-particle Hamiltonian: from Woods-Saxon potential plus spin-orbit

Interaction: pairing plus multipole-multipole interaction terms — quadrupole,
octupole, and hexadecupole

We used SMMC to describe the crossover from vibrational to rotational
collectivity in the framework of the spherical Cl shell model.

The dependence of <j2> on temperature T is sensitive to the type of collectivity
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Nuclear deformation in the spherical shell model:
quadrupole distributions in the laboratory frame

Alhassid, Gilbreth, Bertsch, PRL 113, 262503 (2014)

Modeling of shape dynamics, e.g., fission, requires level density as a
function of deformation.

Deformation is a key concept in understanding heavy nuclei but it is based
on a mean-field approximation that breaks rotational invariance.

The challenge is to study nuclear deformation in a framework that
preserves rotational invariance (e.g., in the Cl shell model) without
resorting to mean-field approximations.

We calculated the distribution of the axial mass quadrupole O,, in the lab
frame using an exact projection on Q,, (novelinthat [Q,,,H]#0).
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Application to heavy nuclei
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At low temperatures, the distribution is similar to that of a prolate rigid rotor
—> a model-independent signature of deformation.
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The distribution is close to a Gaussian even at low temperatures.



Ground-state distributions of P(q,,) for a family of samarium isotopes
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- The distribution P(q,,) in the lab frame becomes skewed in the crossover
from spherical to deformed nuclei

(Q-Q) vs. temperature T for a family of samarium isotopes
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« The rapid decrease of (Q-Q) with temperature is a signature of the sharp
shape transition in the mean field results (Hartree-Fock-Bogoliubov)



Quadrupole distributions P.(,7) in the intrinsic frame
Alhassid, Mustonen, Gilbreth, and Bertsch

Information on intrinsic deformation 3,7 can be obtained from the expectation
values of rotationally invariant combinations of the quadrupole tensor ¢,,, .

3 invariants to 4th order: g - g o< ﬁz; (gXq)-q o< ,33‘305(37) , (Q‘Q)z o< ,34

InP.(B,y) ata giventemperature T is an invariant and can be expanded in
the quadrupole invariants [a Landau-like expansion, used for the free energy
to describe shape transitions in Alhassid, Levit, Zingman, PRL 57, 539 (1986)]

—~InP.=af* +bB’ cos3y +cB”* +...

The expansion coefficients a,b,c... can be determined from the
expectation values of the invariants, which in turn can be calculated
from the low-order moments of ¢,, = ¢ in the lab frame.

7 35
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Expressing the invariants in terms of ¢, in the lab frame and integrating
over the 11 # 0 components, we recover P(q,,) in the lab frame.
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We find excellent agreement with P(q,,) calculated in SMMC !
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 Mimics a shape transition from a deformed to a spherical shape
without using a mean-field approximation !
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The parameter that controls the equilibrium shape is t=ac /b’
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We divide the 3,y plane into three regions:
spherical, prolate and oblate.

Integrate over each deformation region to determine
the probability of shapes versus temperature using

the appropriate metric

I1,da,, > B*|sin(3y)ldBdy
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« Compare deformed (1°*Sm), transitional (°°Sm) and spherical ('8Sm) nuclei
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Level density versus intrinsic deformation

Use the saddle-point approximation to convert P( 3,y) to
level densities vs. E,, B,y (canonical = micro canonical)
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In strongly deformed nucleus, the contributions from prolate shapes
dominate the level density below the shape transition energy.

In a spherical nucleus, both spherical and prolate shapes make significant
contributions.



Conclusion

« SMMC is a powerful method for the microscopic calculation of level densities
In very large model spaces; applications in nuclei as heavy as the lanthanides.

* The axial mass quadrupole distribution in the laboratory frame is a model-
independent signature of deformation.

» Quadrupole distributions in the intrinsic frame can be determined in a
rotationally invariant framework (e.g., the CI shell model) using a Landau-like
expansion.

« Mimics shape transitions without using a mean-field approximation.

» Deformation-dependent level densities can now be calculated in SMMC.

Outlook

» Applications to shape dynamics within a spherical shell model approach.

« Gamma strength functions by inversion of imaginary-time response functions
calculated in AFMC.



