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Nuclear Level Densities

The number of quantum energy levels accessible
at a specific excitation energy, within a given
energy bin.
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Some examples of level densities calculated by
the Oslo Method[1]:
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More data can be found at: 0 g
http://www.mn.uio.no/fysikk/english/research/ab 4 RN S
out/infrastructure/OCL/nuclear-physics-

research/compilation/

Application Areas

» Reactor Physics (design, transmutation of wastes).

* Important inputs in statistical Hauser-Feshbach reaction-rate calculations.
« Calculations for heavy ion collisions.

» Important ingredients for statistical models of the nuclear reactions.

[1] M. Guttormsen et al., The European Physical Journal A, 51:170, (2015).
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The Oslo Method

* The Oslo Cyclotron Group has developed a method to extract the
Nuclear Level Density and Gamma Strength Function
simultaneously[2,3]. The main steps are:

1- Measuring particle-g coincidences.
2- Unfolding vy spectra at each E.

3- Extraction of first-generation matrix
4- Ansatz: First-generation matrix.

P(ELE,) < p(Ef) T(E))

5- Obtain level density, transmission coeffient and thus gama strength
function.

[2] A. Schiller et al., Nucl. Instrum. Methods in Phys. Res. A 447, 494 (2000)
[3] A.C. Larsen et al., Phys. Rev. C 83, 034315 (2011)
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The SIRI Particle Detector System
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* The layout of one silicon chip with its eight AE
detectors for different reaction angles.

* The whole detector including cables to read out the
signal. A total of 8x8=64 particle detectors.



CACTUS Array and the Experiment
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* 13.5 MeV d-beam was sent on 144148150N(d targets.



Reactions Obtained

(97% enrichment and 2

“Nd mg/cm? thickness)
145 (95% enrichment and
Nd 1.9 mg/cm? thickness)
(97% enrichment and
150Nd

1.9 mg/cm? thickness)

144Nd(d,p)***Nd
144N d(d,d’)144Nd
L44Nd(d,1)1*3Nd  (nsufficient

Data)

“ENd(d,p)*°Nd
148Nd(d,d”)14eNd
148N d(d,t)14'"Nd  (nsufficient

Data)

150N d(d,p)*>*Nd
150N d(d,d”)15Nd
1ONd(d,t)149Nd  (nsufficient

Data)



AE-E Bananas for 144Nd

AE : E for all detectors together

8000

= - m_e_de
= = : 10°
= — Entries  2.008093e+07
% 7000 [— Mean x 8426
< = Mean y 1476
F RMS x 2931 .
i RMS y 531.6 i
5000 [
= -
4000 [—
3000 [~ 107
2000 f-—
ik 10
1000

e i BT N |
16000 18000 20000
E(Si) [keV]

Y s
4000 6000

Reaction channels:
144NC (C ’ 0)145NC

148NC (C ’ 0)149NC
150NC (C ’ 0)151NC




Particle —y Ray Coincidence Matrix:
Alfna Matrix

B

« The diagonal E,=E highlights direct decays into the ground state.
* Horizontal line gives the neutron separation enegy S,
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Raw — Unfolded — Primary Matrices
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Subtracting the Spectra

Decay cascades for a hypothetical nucleus™:
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* The first emitted photon in the cascade is called a primary or first
generation y-ray.

* The primary y rays from the level E; can be obtained by
subtracting the spectra from the levels below, E, and E; .

Image taken from Fabio Zeiser’s master’s thesis.



Subtracting the Spectra

Decay cascades for a hypothetical nucleus:
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* The first emitted photon in the cascade is called a
primary or first generation y-ray.

* The primaryy rays from the level E; can be obtained by
subtracting the spectra from the levels below, E, and E; .



Subtracting the Spectra

Decay cascades for a hypothetical nucleus:
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* The first emitted photon in the cascade is called a
primary or first generation y-ray.

* The primaryy rays from the level E; can be obtained by
subtracting the spectra from the levels below, E, and E; .



Determining Level Density

Until now, the primary y-ray spectra was obtanied for each
excitation energy.

This spectra forms the first generation matrix : P(El-, Ey)

Here comes the Fermi’s Golden Rule:

A= (|1 pcEp)



Determining Level Density and y-
Strength Function

dy=2 (F IR p(Er)

Meaning: the decay rate A;r from an initial (i) to a

final (f) state - which corresponds to P(El, E ) can
be decomposed into two parts:

Transition Matrix Element ...and... the Level Density

v v
(r1A0)]° p(Er)



Determining Level Density and y-

Strength Function

* Consequently, we can safely say that, the
decay probability - which corresponds to

P(El-, Ey) - can be factorized as follows:

‘ P(E;, Ey) « p(Ef) T (Ey)
*  First Generation Matrix Level Density Transm'ss'on\Coeff'c'ent

p(E; — Ey) = p(E; — Ey)Aexp|x (E; — Ey )]
T7(E,) =T(E,)Bexp[x E, ]



P(E;, Ey) « p(Ef) T (Ey)
Does it work?
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Parameters Used to Extract the Level
DEeNSITIOS s e rom wpis caabses

Neutron Separation Level Density Parameter Back-Shift Parameter Spin-Cutoff Parameter

Energy

S, a E, (o]
(MeV) (MeV-1) (MeV)
5.755 15.942 -0.052 6.09
5.039 17.867 -0.446 5.97
5.335 17.820 -0.596 6.15

Resonance Spacing

Constant Temperature

Level Density at S,

Parameter
Do T P (Sn)
(eV) (MeV) (108MeV-1)
450 0.590 1.673E+05
155 0.520 4.662E+05
165 0.560 4.278E+05



Microcanonical Combinatorial Model

* Makes use of the Nilsson Model and BCS
theory to calculate level densities.

 Nilsson Model:

— Accounts for most of the observed features of
single-particle levels in deformed nuclei.

— Provides a microscopic basis for the existence of
rotational and vibrational motion.



Nilsson Model

Applied to generate a set of single-particle ortibals*.

The Nilsson ortibal energies (es,) are transferred to single quasi-particle energies by the

Bardeen-Cooper-Schrieffer (BCS) theory™*:

€qp = \/(esp - ’1)2 + A2

A: Fermi level, determined by the number of protons and neutrons.
Include orbitals from 8 MeV below the Fermi level up to 8 MeV above the Fermi level.

For pairing energy parameters we use:

. o Az(MeV) | 4, (MeV)
Finally, the level density is given by:

p(E) ="®)/, 145Nd  2.098 1.936
*S. G. Nilsson, Mat. Fys. Medd. Dan. Vid. Selsk. 16, 29 149N d 1.789 2.086

(1955).
** ). Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,

1175 (1957) 151Nd 1.690 1.994
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Combinatorial Models - 14°Nd

Oslo data
Combi Model
Knowh Levels
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Nilsson Parameters

g, K M

Quadrupole Spin-Orbit  Centrifugal

Deformation  Splitting Parameter
Proton 0.160 0.06370 0.6
Neutron 0.160 0.06370 0.42

Deformation parameter is taken
from RIPL3 database.

Spin-orbit splitting and centrifugal
paramaters are taken from «P. Ring
and P. Schuck — The Nuclear Many-
Body Problem».
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Combinatorial Models — 1*°Nd
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Combinatorial Models — >INd
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Future Plans

* Study even nuclei: 144148,150Nd
 Perform 14?Nd(d,xy)
. 1496Nd(d,xy)  reactions at OCL ©.
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