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Gamma Strength Function (GSF) for
E1 transitions
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Applications of the gamma strength
function

I Influences the reaction rates in r- and s-process

I Important in reactor technology (i. e. for transmutation of long
lived radioactive waste)

I Test of the Brink-Axel hypothesis

I Gamma strength function depends only on Eγ
I Independent of the structure of the initial state

I Test of models in the Reference Input Parameter Library (RIPL)
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Gamma strength function models

I Standard Lorentzian Model (SLO)

I The Lorentz parameters can be obtained from photoabsorption experiments

I Enhanced Generalised Lorentzian Model (EGLO)

I Lorentzian term with energy- and temperature-dependent width
I A term describing the shape of the low-energy part

I Modified Lorentzian Model (MLO)

I Lorentzian with energy- and temperature-dependent width
I Scaling factor which accounts for the enhancement of the GSF with increasing

temperature
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Determination of the E1 gamma
strength function

I 120Sn(p,p’) experiment conducted
at RCNP, Japan

I Double differential cross section
converted to photoabsorption
cross section using Virtual
Photon Method

I Gamma strength function
determined from
photoabsorption cross section
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E1 contribution to the gamma strength
function
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Determination of the M1 contribution
to the gamma strength function

I Extract B(M1) strength from
(p,p’) data using unit cross
section technique

I Theoretical description of M1
gamma strength function

f M1(E) =
f E1(Sn)
R

ΦM1(E)
ΦM1(Sn)

R =
f E1(Sn)
f M1(Sn)

= 0.0588A0.878

siehe Tabelle A.18. Da bekannt war, dass es sich bei der angeregten M1-Stärke um rein isovekto-
rielle Anregungen handelte, wurde sowohl der Korrekturfaktor α̃NN als auch der Korrekturfaktor
R̃IV

ges = 1 gesetzt. Unter diesen Annahmen ergab sich die differentielle M1-Stärkeverteilung, die
im unteren Diagramm links in Abbildung 9.8 zu sehen ist. Rechts daneben sind die laufenden
Summen der M1-Stärken aus dem (p,p’)-Experiment und den beiden anderen Messungen zu
sehen. Berücksichtigt wurden Daten im Anregungsenergiebereich Ex = (7 − 9) MeV. In [Las88]
wird zusätzliche Stärke bei kleineren Energien angegeben. Die Bestimmung des Multipolcha-
rakters der γ-Strahlung war jedoch mit großen Unsicherheiten behaftet, weshalb die korrespon-
dierende Stärke hier unberücksichtigt blieb. Der Vergleich der Graphen macht deutlich, dass
die Unterschiede in den differentiellen M1-Stärken weitestgehend klein sind. Die Anhäufung
von M1-Stärke um Ex = 7,52 MeV spiegelt sich in beiden Fällen in Form einer resonanzartigen
Struktur wider. Die laufenden Summen sind ebenfalls nahezu verträglich, sodass sich aus diesem
Vergleich keine schwerwiegenden Einwände gegen die Methode der Auswertung ableiten lassen.
Auffällig ist, dass im Rahmen des (p⃗, p⃗’)-Experiments zusätzliche Spin-M1-Stärke bis zu einer
Anregungsenergie von Ex = 9 MeV gemessen werden konnte.
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Abbildung 9.8: Vergleich der differentiellen M1-Stärkeverteilung für den Kern 208Pb mit
den Ergebnissen aus [Las88] und [Koe87]. Das graue Band um die laufende Summe der
208Pb (p,p’)-Daten entspricht dem 1s-Konfidenzband.

9.5 Extraktion der M1-Stärke aus 48Ca-Daten

Sowohl für die (p,p’)- als auch für die (p,n)-Reaktion existieren Daten aus verschiedenen Expe-
rimenten bei unterschiedlichen Einschussenergien. Dies machte es möglich, unabhängige Werte
der Übergangsstärken zu berechnen und diese Ergebnisse miteinander auf Konsistenz zu prüfen.
Die verwendeten Daten stammen aus zwei 48Ca(p,p’)-Experimenten bei Ep = 201 MeV [Craw83]
und Ep = 295 MeV [RCNP12] sowie aus einem 48Ca(p,n)48Sc-Experimenten bei Ep = 295 MeV
[Yak09].

134

J. Birkhan et al., Phys. Rev. C 93 (2016) 041302
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M1 contribution to the gamma
strength function
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Sum of B(M1) strength in 120Sn
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E1 and M1 gamma strength functions
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Total gamma strength function
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Total gamma strength function
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Comparison with isoscalar probe

J. Endres et al., Phys. Rev. C 85 (2012) 064331
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Determination of the level density

I Background from MDA

I Stationary spectrum

d(Ex ) =
g(Ex )

g>(Ex )

I Autocorrelation function

C(ε) =
〈d(Ex ) · d(Ex + ε)〉
〈d(Ex )〉 · 〈d(Ex + ε)〉
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Determination of the level density

I Variance of the autocorrelation
function

C(0)− 1 =
〈d(Ex )2〉 − 〈d(Ex )〉2

〈d(Ex )〉2

I Model for the approximation of
the exp. autocorrelation function
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Level densities of 1− states
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Determination of the total level density

I Total level density

ρtot (E) =
2ρ(E , J,Π)
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Spin distribution function of 120Sn
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Comparison of the total level density
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Summary

I The gamma strength function and level density is independently
determined from (p,p’) data

I Parametrisation of the M1 strength in RIPL-3 overestimates the
exp. data

I In the PDR region the (p,p’) data is higher than the Oslo data
→ Possible violation of Brink-Axel hypothesis?

I No model can describe the level density from (p,p’) and
(3He,3He’γ) at the same time
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Outlook: Systematics of tin isotopes
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Outlook: Systematics of tin isotopes
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Outlook: Level density of 1− states in
124Sn
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GSF models

I Standard Lorentzian Model (SLO)

fSLO(E) =
σrΓr

3(π~c)2

Γr E
(E2 − E2

r )2 + (Γr E)2

I Enhanced Generalized Lorentzian Model (EGLO)

fEGLO(E) =
σrΓr

3(π~c)2

[
ΓK (E , T )E

(E2 − E2
r )2 + (ΓK (E , T )E)2

+ 0.7
ΓK (E = 0, T )

E3
r

]
I Modified Lorentzian Model (MLO)

fMLO(E) =
σrΓr

3(π~c)2

Λ(E , T )Γ(E , T )E
(E2 − E2

r )2 + (Γ(E , T )E)2
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M1 contribution to the gamma
strength function in 208Pb
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Sum of B(M1) strength in 208Pb

siehe Tabelle A.18. Da bekannt war, dass es sich bei der angeregten M1-Stärke um rein isovekto-
rielle Anregungen handelte, wurde sowohl der Korrekturfaktor α̃NN als auch der Korrekturfaktor
R̃IV

ges = 1 gesetzt. Unter diesen Annahmen ergab sich die differentielle M1-Stärkeverteilung, die
im unteren Diagramm links in Abbildung 9.8 zu sehen ist. Rechts daneben sind die laufenden
Summen der M1-Stärken aus dem (p,p’)-Experiment und den beiden anderen Messungen zu
sehen. Berücksichtigt wurden Daten im Anregungsenergiebereich Ex = (7 − 9) MeV. In [Las88]
wird zusätzliche Stärke bei kleineren Energien angegeben. Die Bestimmung des Multipolcha-
rakters der γ-Strahlung war jedoch mit großen Unsicherheiten behaftet, weshalb die korrespon-
dierende Stärke hier unberücksichtigt blieb. Der Vergleich der Graphen macht deutlich, dass
die Unterschiede in den differentiellen M1-Stärken weitestgehend klein sind. Die Anhäufung
von M1-Stärke um Ex = 7,52 MeV spiegelt sich in beiden Fällen in Form einer resonanzartigen
Struktur wider. Die laufenden Summen sind ebenfalls nahezu verträglich, sodass sich aus diesem
Vergleich keine schwerwiegenden Einwände gegen die Methode der Auswertung ableiten lassen.
Auffällig ist, dass im Rahmen des (p⃗, p⃗’)-Experiments zusätzliche Spin-M1-Stärke bis zu einer
Anregungsenergie von Ex = 9 MeV gemessen werden konnte.
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Abbildung 9.8: Vergleich der differentiellen M1-Stärkeverteilung für den Kern 208Pb mit
den Ergebnissen aus [Las88] und [Koe87]. Das graue Band um die laufende Summe der
208Pb (p,p’)-Daten entspricht dem 1s-Konfidenzband.

9.5 Extraktion der M1-Stärke aus 48Ca-Daten

Sowohl für die (p,p’)- als auch für die (p,n)-Reaktion existieren Daten aus verschiedenen Expe-
rimenten bei unterschiedlichen Einschussenergien. Dies machte es möglich, unabhängige Werte
der Übergangsstärken zu berechnen und diese Ergebnisse miteinander auf Konsistenz zu prüfen.
Die verwendeten Daten stammen aus zwei 48Ca(p,p’)-Experimenten bei Ep = 201 MeV [Craw83]
und Ep = 295 MeV [RCNP12] sowie aus einem 48Ca(p,n)48Sc-Experimenten bei Ep = 295 MeV
[Yak09].
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Low energy B(E1) in 120Sn
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Total level density in 208Pb
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