

Statistical vs. direct γ -decay of $^{64,65}\text{Ni}$

L. Crespo Campo¹, M. Guttormsen¹, A. C. Larsen¹, F. L. Bello Garrote¹, T. K. Erisken², A. Görzen¹, K. Hadynska-Klek³, M. Klintefjord¹, T. Renstrøm¹, E. Sahin¹, S. Siem¹, A. Springer¹, T. G. Tornyil², G. M. Tveten¹

¹ Dept. of Physics, University of Oslo, N-0316 Oslo, Norway

² Dept. of Nuclear Physics, The Australian National University, ACT 2601, Australia.

³ Istituto Nazionale di Fisica Nucleare, Lab. Nazionali di Legnaro, 2 35020 Legnaro, Italy

Several analytical techniques in nuclear physics are based on the generalized Brink-Axel hypothesis (gBA), since it considerably simplifies calculations. In general terms, the gBA hypothesis implies that the dipole γ -strength is independent on the structure of the initial state, having no explicit dependence on the excitation energy, spin or parity, besides the selection rules for dipole transitions [1, 2]. Therefore, when the gBA hypothesis is valid, the γ -Strength Function (γ SF) depends solely on the γ -ray energy for dipole radiation [3].

Given the extensive application of the gBA hypothesis, it is of great importance to determine the circumstances under which this hypothesis holds. This is often a difficult task, specially for nuclei in which strong Porter-Thomas fluctuations are observed. As shown in Ref. [5], the heavy odd-odd nucleus ^{237}Np presents a extremely high level density ($\approx 10^7$ levels/MeV). Averaging over many γ -transitions can be then performed and Porter-Thomas fluctuations are less significant. In contrast, lighter nuclei such as $^{64,65}\text{Ni}$ present a much lower level density ($\approx 10^3$ levels/MeV) and strong Porter-Thomas fluctuations are seen. Extracting conclusions regarding the validity of the gBA hypothesis becomes then more difficult and the role of Porter-Thomas fluctuations needs to be investigated in more detail.

In this talk, the validity of the gBA hypothesis in $^{64,65}\text{Ni}$ is discussed. The analysis of particle- γ coincidences on the $^{64}\text{Ni}(p, p'\gamma)^{64}\text{Ni}$ and $^{64}\text{Ni}(d, p\gamma)^{65}\text{Ni}$ reactions [6, 7] is here presented together with a further study of the γ SF of $^{64,65}\text{Ni}$. The dependence of the γ SF with initial and final excitation energy is investigated and the role of Porter-Thomas fluctuations estimated.

- [1] D. M. Brink, P.h.D. thesis, Oxford University, 1955.
- [2] P. Axel, Phys. Rev. 126, 671 (1962).
- [3] G. A. Bartholomew *et al.*, Advances in Nuclear Physics, edited by M. Baranger and E. Vogt (Plenum, New York, 1973), Vol. 7, p. 229.
- [4] C. E. Porter and R. G. Thomas, Phys. Rev. **104**, 483 (1956).
- [5] M. Guttormsen, *et al.*, Phys. Rev. Lett. **116**, 012502 (2016). M. Guttormsen, *et al.*, *Is the generalized Brink-Axel hypothesis valid?*, 26th International Nuclear Physics Conference, Adelaide, Australia. Submitted to Proceedings of Science (2016).
- [6] L. Crespo Campo, *et al.* Phys. Rev. C **94**, 044321 (2016)
- [7] L. Crespo Campo, *et al.*, *Investigating the γ -decay of ^{65}Ni* , to be submitted to Phys. Rev. C.

