

Investigating the surrogate method via the simultaneous measurement of fission and gamma probabilities

D. Denis-Petit¹, B. Jurado¹, P. Marini², R. Pérez-Sanchez¹, M. Aiche¹, S. Czajkowski¹, L. Mathieu¹, I. Tsekhanovich¹, V. Méot², O. Roig², B. Morillon², P. Romain², O. Bouland³, L. Audouin⁴, L. Tassa-Got⁴, J. N. Wilson³, M. Guttormsen⁵, O. Sérot³, S. Oberstedt⁶

¹ CENBG, Bordeaux, France ² CEA/DAM-DIF, Arpajon,France ³ CEA/DEN, Saint Paul Lez Durance, France ⁴ IPN Orsay, Orsay France ⁵ University of Oslo, Oslo, Norway ⁶ EC-JRC, Geel, Belgium Need for neutron induced cross sections of short-lived nuclei

- Astrophysical studies
 - Nucleosynthesis (r and s processes)
- Applications
 - Transmutation of nuclear wastes
 - New reactor design (Th/U cycle)

- Fundamental nuclear physics
 - Improvement of nuclear reaction models (level density, γ strength function, fission barriers...)
 - > Difficulty: production and handling radioactive targets
 - > Alternative to neutron-induced reaction : the surrogate reaction method

The surrogate-reaction method

- Principe
 - Production of the same compound nucleus via an alternative reaction

- > Advantage : possibility to find a stable or weak radioactive target
- ➤ Validity of this method?

Validity of the surrogate-reaction method

Formation of a compound nucleus (surrogate and the neutron reactions)

$$\sigma_{\chi}^{A-1}(E_n) = \sigma_{CN}^A(E_n) P_{\chi}(E^*) \quad \text{where}: \ P_{\chi}(E^*) = \sum_{J^{\pi}} S(E^*, J^{\pi}) P_{\chi}(E^*, J^{\pi}) P_{\chi}$$

- Same decay probability in the surrogate and neutron-induced reactions
 - → two extreme cases :
 - Same J and π distributions in the two reactions : $S_{ ext{n-induced}}(E^*,J^\pi)=S_{ ext{surrogate}}(E^*,J^\pi)$
 - Decay probability of the CN independent of the J and π distributions (Weisskopf-Ewing limit) : $\mathcal{P}_\chi(E^*,J^\pi)=\mathcal{P}_\chi(E^*)$
- Validity of the surrogate method determined a posteriori
 - Need neutron-induced data
 - Systematic studies must be performed

Experimental setup

• Measurement of the γ emission and fission probabilities simultaneously

Fission detectors: solar cells

• γ detectors : C_6D_6 , Ge

ΔE–E telescopes : SiLi

Experimental setup

y detector

Beam

 ΔE

- Measurement of the γ emission and fission probabilities simultaneously
 - Fission detectors: solar cells
 - γ detectors : C₆D₆, Ge
 - ΔE–E telescopes : SiLi
- Several surrogate reactions in one experiment
 - Identification of the reaction with the telescope

- Q. Ducasse et al., Phys. Rev. C 94, 024614 (2016)
- E* fully determined with the reaction kinematics

Fission detector

Target

Ejectile

Validation of our experimental technique

Determination of the decay probability P_{γ} :

Single ejectile spectrum χ detection efficiency

- Check for a fissile nucleus : $^{238}U(^{3}He,d)^{239}Np \Leftrightarrow n + ^{238}Np$
 - $P_f + P_Y = 1$ for $E^* < S_n P_{1.4}$

Typical results

 238 U(3 He, 4 He) 237 U \Leftrightarrow n + 236 U

Fission

Good agreement between surrogate and n-induced reactions

See also:

- G. Kessedjian et al., Phys. Lett. B 692 297 (2010)
- G. Kessedjian et al., Phys. Rev. C 91 044607 (2015)

y emission

P. Marini et al., to be published E*[237U] (MeV)

Large discrepancies between surrogate and n-induced reactions

See also:

- G. Boutoux et al., Phys. Lett. B 712 (2012) 319
- Q. Ducasse et al., Phys. Rev. C 94, 024614 (2016)

Typical results

 $^{238}U(^{3}He, ^{4}He)^{237}U \iff n + ^{236}U$

P. Marini et al., to be published

Good agreement between surrogate and n-induced reactions

See also:

- G. Kessedjian et al., Phys. Lett. B 692 297 (2010)
- G. Kessedjian et al., Phys. Rev. C **91** 044607 (2015)

Large discrepancies between surrogate and n-induced reactions

See also:

- G. Boutoux et al., Phys. Lett. B 712 (2012) 319
- Q. Ducasse et al., Phys. Rev. C **94**, 024614 (2016)

Spin and parity distribution calculations

- Difference between the spin distributions in surrogate and n-induced reactions
 - Surrogate reactions populate higher spins than n-induced ones
 - Neutron emission from high spins not possible
 - γ emission probability increases

DWBA calculations

- I. Thompson, J. E. Escher, UCRL-TR-225984 (2006)
- ightharpoonup Fission seems not to be sensitive to the J^{π} distributions
- \triangleright γ emission very sensitive to the J^{π} distributions

Theoretical interpretation of the ²³⁸U(³He, ⁴He)²³⁷U reaction

- y and fission probabilities calculated with the statistical model
 - J^{π} distributions previously calculated are used as inputs in the Hauser-Feshbach calculations
 - Statistical model based on Extended R-Matrix theory (O. Bouland)

6.1 6.2 6.3

E*[²³⁷U] (MeV)

5.6 5.7 5.8 5.9

Theoretical interpretation of the ²³⁸U(³He, ⁴He)²³⁷U reaction

- γ and fission probabilities calculated with the statistical model
 - J^{π} distributions previously calculated are used as inputs in the Hauser-Feshbach calculations
 - Statistical model based on Extended R-Matrix theory (O. Bouland)

6.1 6.2 6.3

E*[²³⁷U] (MeV)

5.6 5.7 5.8 5.9

- Common theoretical framework which reproduces fission and γ emission for n-induced and surrogate reactions
- ➤ Possibility to use surrogate data to tune model parameters
 → calculations of n-induced cross sections

Surrogate reactions inside storage rings?

- Limitation of the surrogate reaction in direct kinematics
 - Availability of targets
 - Background from target contaminants and backing
 - Heavy decay residues not measured
- Advantages of inverse kinematics :
 - Access to short-lived nuclei
 - Detection the heavy decay residues
 - Better fission fragment detection efficiency (forward angle focusing)

- Advantages of inverse kinematics inside storage rings:
 - Good beam energy definition and resolution (a few 100 keV at 10 A MeV)
 - Good beam spatial resolution (~1 mm)
 - Measurement with gas-jet target (H, D, ³He, ⁴He)
 - Pure target : no window, no backing, no contaminant
 - Low density target (10¹⁴ atoms/cm²) but counterbalanced by the revolution frequency (1 MHz)
 - Production of isomeric beams : study the impact of J^{π} on nuclear reaction models

Experimental setup inside a storage ring

- Experiment inside a storage ring (ESR, CRYRING,...)
 - Inverse kinematics
 - Ultrahigh vacuum (UHV): 10⁻¹¹ mbar
- Benchmark reaction : ${}^{238}\text{U} + {}^{3}\text{He} \rightarrow {}^{239}\text{Np} + {}^{2}\text{H} \Leftrightarrow n + {}^{238}\text{Np}$
 - γ emission : coincidence telescope $^2H/^{239}Np$ in the dipole

Experimental setup inside a storage ring

- Experiment inside a storage ring (ESR, CRYRING,...)
 - Inverse kinematics
 - Ultrahigh vacuum (UHV): 10⁻¹¹ mbar
- Benchmark reaction: ${}^{238}\text{U} + {}^{3}\text{He} \rightarrow {}^{239}\text{Np} + {}^{2}\text{H} \Leftrightarrow n + {}^{238}\text{Np}$
 - γ emission : coincidence telescope ${}^2H/{}^{239}Np$ in the dipole
 - Fission: coincidence telescope ²H/fission detector

Feasibility studies inside storage rings

²³⁸U Beam

10 A MeV

³He Gas-jet target

Telescopes

- High angular resolution needed to obtain a well energy resolution
- 4 Si 6.2x6.2 cm, 128x128 strips
- θ from 35° to 70° with $\Delta\theta$ from 0.03° to 0.3°
- Fission fragment detector
 - High detection efficiency due to forward focusing: 20° cone
 - Efficiency: ~94% at 35 cm
 - Solar cells if UHV compatible or Si detector
- Beam-like nucleus detector
 - Si detector in a specific arm: feasibility demonstrated
 - Transmission higher than 40%
 - High detection efficiency (~6% in direct kinematics)

Telescope

Quadrupoles

Dipole

Conclusion

- Surrogate reactions: alternative to neutron induced reactions
 - Good agreement between surrogate and n-induced reaction for fission ...
 - ... but large discrepancies for γ emission
 - More investigations required to understand this phenomenon and the role of the spin/parity distributions
 - \triangleright Last experiment in Orsay (April 2017) : 240 Pu(3 He, 4 He), 240 Pu(3 He, 3 He'), 240 Pu(4 He, 4 He')
- Surrogate reactions in direct kinematics: limitations
 - Target availability (even if easier than for n-induced reactions)
 - Target contaminants
 - No heavy residue detection
 - Experiment in inverse kinematics inside storage rings?
- Surrogate reaction inside storage rings
 - Pure target
 - · High beam quality: energy and spatial resolution
 - High detection efficiencies: fission fragments, beam residues
 - Isomeric beams
 - > Studies in progress...

Thank you for your attention

The EXtrapolated Efficiency Method (EXEM)

$$\mathbf{\gamma}$$
 emission probability :
$$P_{\gamma}(E^*) = \frac{N_{\gamma}^{coinc}(E^*)}{N^{single}(E^*)\epsilon_{\gamma}(E^*)}$$

For E* where only the emission is possible (E*<S $_{\rm n}$,fission threshold) : $P_{\gamma}(E^*)=1$

$$P_{\gamma}(E^*) = 1 \Rightarrow \epsilon_{\gamma}(E^*) = \frac{N_{\gamma}^{coinc}(E^*)}{N^{single}(E^*)}$$

Extrapolation of the efficiency

Fission probabilities as function of J^{π}

γ emission probabilities as function of J^{π}

Typical results

G. Kessedjian et al., Phys. Lett. B 692 297 (2010)

174 Yb(3 He,p) 176 Lu \Leftrightarrow n + 175 Lu

G. Boutoux et al., Phys. Lett. B 712 (2012) 319

Solar cell

Si-Solar cell comparison

Composition

Impact of the FF flux

Telescope

 Inverse kinematics: strong dependence of kinetic energy of target-like nuclei with angle

• Need a high angular resolution to obtain a suitable energy resolution : $\Delta\theta\sim0.1^\circ$

- Possible design: annular Si detector like SPIDER (GANIL)
 - > High pixelisation required
 - ➤ Need a reaction chamber (at ESR)

Detector for

Dipole

Fig. 1. Scheme of the annular telescope SPIDER

X. Derkx *et al.*, EPJ web of Conf. 2, 07001 (2010) 25

Fission detector

- Inverse kinematics: fission fragments focused at forward angle
 - Higher detection efficiency: ~94% at 35 cm

²³¹Th fission at E*=10 MeV and 8.7 MeV/A

Kinetic energy calculated with the GEF code. Isotropic angular distribution in the CM for the fragments. B. Jurado, HDR, Université de Bordeaux (2015)

- Solar cells
 - Access to the fragment kinetic energy
 - In UHV: no energy loss in an entrance window
 - > FF properties as a function of E*
 - > Can we use solar cell in UHV?

Beam-like nuclei detector

- Feasibility of nuclear reaction measurement demonstrated
 - Double-Side Silicon Strip Detector (DSSSD)
 used to measure beam-like nuclei
- Recent developments:
 - DSSSD directly in UHV without an entrance window
- Coincidence with the telescopes
 - No background
- Use solar cells instead of Si
 - · Same response
 - Cheaper
- Transmission efficiency
 - Geant4/Mocadi simulations are in progress

B. Mei *et al.*, Phys. Rev. C, **92** 035803 (2015)

J. Glorius *et al.*, PoS **NIC XIII**, 096 (2014)