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Introduction

Nuclear data needed for developing a nuclear transmutation

Motivati ] . ..
[ oHvaton system for long-lived fission products (LLFPs)

® We are planning nuclear data evaluations for
4 LLFPs : 79Se, 93Zr, 107pd, 135Cs

+ nuclei produced via the nuclear transmutation of these LLFPs.

Neutron, proton induced
0~200 MeV energy range

® The nuclear data evaluation is characterized with,

v' Use of new experimental data to be obtained by other project group

[\/ Development of theoretical methods appropriate/needed for unstable nuclei 1

One of the plan is, l

Hauser-Feshbach calculation using a nuclear level density (NLD) derived
from a microscopic nuclear structure calculation



For nuclear data evaluation,

v" NLD up to 200 MeV
v" NLD of wide mass range of nuclei are needed

» A microscopic method can be used for this purpose is,

* Hartree-Fock-bogoliubov (BCS) + combinatorial (statistical) method

P. Demetriou and S.Goriely, Nucl. Phys. A695 (2001) 95
S.Hilaire, J.P.Delaroche and M.Girod, Eur. Phys. J. A 12 (2001) 169

S.Goriely, S.Hilaire and A.J.Koning, Phys. Rev. C 78 (2008) 064307

» The microscopic calculation depends on used Hamiltonian

Effective nuclear interaction
Gogny, BSk, MSk ...

To investigate how NLD depends on the effective nuclear interaction
is an way to know about the reliability of NLD

[In this study, ]

v" NLD were calculated from HFB +statistical method using Skp, SLy4, SkM* Skyrm forces

v Hauser-Feshbach calculation using these NLD were performed

v’ Difference of NLD and resulting (n,2n) cross section are discussed



Framework

® Hartree-Fock-Bogoliubov theory + statistical method

v Grand partition function

BCS approximation with constant-G approach
P. Demetriou and S.Goriely, Nucl. Phys. A695 (2001) 95
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v" Thermal excitation energy

U(T)= E(T)— E(T =0) E(T): Total energy of the system obtained from the
finite temperature HFB calculation



@® FEffective nuclear interaction v" Neutron pairing gaps

» Skyrme forces: Skp, SLy4, SkM* 66 even-even nuclei
that have experimental values of D,
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v Level density

p(U, J) = (1 — fdam(U))Kvib(U)pSph(Uv J) + fdam(U)Kvib(U)pdef(Ua J)
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faam (U) : damping function for smooth transition between p,; and py

v" Phenomenological vibrational collective enhancement
IAEA-TECDOC-1506: Reference Input Parameter Library-2, IAEA, 2005
Kvin(Ex) =exp[3S — (3U/1)]

58 = 2(2)&5 + 1)[(1 +n;)In(l +n;) —n; hli’lg] v Damping width parameter C of K, is optimized for
i each force by fitting D, of well deformed nuclei
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® Hauser-Feshbach calculation using the microscopic NLD

CCONE code 0. Iwamoto, J. Nucl. Sci. and Technol. 44 (2007) 687.

> Hauser-Feshbach statistical model

v Optical model potential: Koning-Delaroche
v' Gamma strength function: Enhanced generalized Lorentzian (EGLO) model
v Nuclear level density

Present work
* Hartree-Fock-Bogoliubov theory + statistical method
with Skp, SLy4, SkM* forces

For comparison,

* Hartree-Fock-Bogoliubov theory + combinatorial method
taken from RIPL-3
S.Goriely, S.Hilaire and A.J.Koning, Phys. Rev. C 78 (2008) 064307

* Fermi Gas model with Mengoni-Nakajima level density parameter
A.Mengoni, Y.Nakajima, J. Nucl. Sci. Tecnnol. 31 (1994) 152



Results

® S-wave neutron resonance spacing D,

for 66 even-even nuclei
v' Using K, with damping width

v Without K, parameter optimized for each force
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v" For Skp force, NLD calculated without K, is not bad compared to SkM* and SLy4
v" Vibrational collective enhancement is essential for NLDs calculated using SkM* and SLy4
v" By using the optimized K, all forces deduce similar D,



® Single-particle levels
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v" Vibrational collective enhancement should be treated explicitly in NLD
calculated using effective mass ~0.7 Skyrm forces

v’ Effect of the vibrational collective enhancement may be implicitly

included in effective mass ~ 1 forces



® Cumulative number of levels FGAS: Fermi Gas without constant temperature cal.
RIPL-3: S.Goriely, S.Hilaire and A.J.Koning, PRC78 (2008) 064307

Compound nuclei of LLFPs (7°Se, °3Zr)
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v" NLDs cross around the neutron threshold.

v" NLD around and above neutron threshold are influenced by the
disappearance of deformation and vibrational collective enhancement.

v" How these differences affect the cross section calculated using Hauser-Feshbach ?



® Differences in (n,2n) cross section
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v (n,2n) cross section even have sensitivity to
the difference of NLD

v’ Significant difference is found in 80Se

v What is the reason for this differences ?
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v’ Total level density
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v" (n,2n) cross section has sensitivity to
the slope of the target nucleus NLD

v' If the deformation change occurs
around the neutron threshold, (n,2n)
cross section is significantly reduced

20



(n,2n) cross section of well deformed nuclei
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v" Vibrational coIIectlve enhancement
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v If the deformation does not change below 20 MeV, difference is small

v" On the other hand, difference in K, has noticeable effect on (n,2n) cross section



® Differences in (n,2n) cross section of nuclei around LLFPs
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v' Difficulty in describing the deformation change is a source of large uncertainty

20



Summary

® NLD were calculated from HFB +statistical method using
Skp, SLy4, SkM* Skyrm forces

v" The vibrational collective enhancement is essential for effective mass ~0.7 forces

v" NLD obtained from Skp, SLy4, SkM* forces deduce similar D, if the optimized
vibrational collective enhancements are combined

® Hauser-Feshbach calculation using these NLD

v’ (n,2n) cross section have sensitivity to the slope of the target nucleus NLD

v' If the deformation change occurs around the neutron threshold, (n,2n)
cross section is significantly reduced
— Large difference among used forces

v Difference in the damping of K, for each forces is also visible in (n,2n) cross section



