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The E1 strength function 

•  Standard Lorentzian (E0, Γ0, σ0)
•  Lorentzian with E-dependent width (e.g McCullagh et al. 1981)

•  Generalized Lorentzian with T- and E-dep. width (e.g Kopecky & Uhl 1990)
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The E- and T-dependent width is essentially 
derived from the theory of Fermi liquids 
(e.g Kadmenski et al. 1983) and also 
suggested by experimental ARC data 

Kopecky & Uhl (1990)

collisions between 
quasi-particles

Γ=
Γ0
E0
2 E 2 + 4π 2T 2( )

decay of p-h states into 
more complex states

At the basis of GLO, EGLO, MLO, SMLO, Hybrid, … models



Mean Field + QRPA γ-ray strength function

QRPA calculations can accurately reproduce experimental data,
provided empirical corrections are made, i.e.

•  Empirical damping of collective motions à broadening
•  Empirical Energy shift (beyond 1p-1h excitations and 

phonon couplings)
•  Empirical deformation effects for spherical calculations

Large-scale E1 Mean-Field + QRPA calculations

Skyrme-HFB + QRPA Gogny-HFB + QRPA RMF +QRPA

Recent large-scale Gogny-HFB + QRPA calculations: 
Consistent axially deformed calculation 

for 1470 e-e nuclei with 8 ≤ Z ≤ 98
(interpolation for ~ 4000 odd-A & odd-odd nuclei)
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Gogny-HFB + QRPA Ε1 strength function

•  axially-symmetric deformed QRPA estimate of the E1-strength based on 
the D1M Gogny force

•  Empirical damping of the collective motions : each 
strength is folded by a Lorentzian function (Γ~2.5 MeV)

Energy shift at GDR centroid energy of ~ –2.5MeV 
with respect to experiment to take 2p-2h and 
phonon coupling into account

Δ=Δ(ω)

All details given in S. Hilaire talk (Wednesday 10am)

Péru, Martini, Hilaire et al. (2016)



Comparison with experimental (RIPL3) photodata
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HFB + QRPA strength 
Tested on recent (γ,n) data from Utsunomiya et al.

80Se, 90-96Zr, 94-100Mo, 105-108Pd, 116-124Sn, 139La, 141Pr, 143-148Nd, 
144-154Sm, 181Ta, 186W, 187Re, 188Os, 206-208Pb 

With additional constraints from the reverse experimentally known 
(n,γ) cross sections (though NLD-dependent)

(cf γ-ray strength method; Utsunomiya et al.)
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WHAT ABOUT THE M1 STRENGTH ?



Gogny-HFB + QRPA M1 strength function
Axially-symmetric deformed QRPA estimate of the M1-strength 
based on the D1M Gogny force: same normalisation as for the E1

Spherical nucleus 
Spin-flip GR 

Deformed nucleus 
Spin-flip GR Scissors mode 



Comparison with experimental data
Low-energy (2.4–3.7 MeV) M1 strength in the rare-earth region
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D1M + QRPA strength needs to be increased by a factor 2 ! 



Deformation dependence of the scissors mode

Total strength below 4.5 MeV 

ΣB(M1)∝β2
2



106Pd & 233Th strength function : E1 & M1 components

Comparison with ARC and Oslo data



New evaluation of ARC data for 48 nuclei (Kopecky 2017) 

M1: QRPA



New evaluation of ARC data for 48 nuclei (Kopecky 2017) 
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D1M+QRPA underestimate of the M1 strength by ~30%

E1/M1 ratio: stringent test for γ-ray strength models



What about exotic nuclei away from the 
valley of β-stability ?
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(n,γ) MACS with Generalized Lorentzian (GLO) E1 strength 
compared with 

Gogny-HFB + QRPA calculations

Factor ~ 50
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~ 4700 nuclei with 8 ≤ Z ≤ 92

M1 impact stems from the appearance of the low-lying scissors mode in def. nuclei

Impact of the D1M+QRPA M1 strength on (n,γ) rates at T=109K



Impact of the D1M+QRPA M1 strength on (n,γ) rates at T=109K



γ-ray strength function for the n-deficient nuclei 
Pygmy Dipole Resonance

ACl(p,γ)A+1Ar reaction rateD1M+QRPA E1 strength in Ar isotopes



Impact of a possible low-energy 
M1 upbend 



A.-C. Larsen et al. (2009)

The low-energy upbend structure observed experimentally in Oslo

Upbend observed for 44,45Sc, 50,51V, 56,57Fe, 
73-74Ge, 93-98Mo, Sm but not (yet) for Sn, 
Dy, Er or Yb

particle-γ coincidence in the (3He,αγ) & (3He,3He’γ) reactions

R. Schwengner et al. (2013); Brown & Larsen (2014); Sieja (2016)

The M1 character of the upbend seems to be 
confirmed by shell model calculations (though 

an E1 character cannot be excluded yet)



Impact of an low-energy M1 upbend on the (n,γ) reaction rate

(n,γ) rate ratio : <σ>(M1 upbend) / <σ>(No M1 upbend) at T=109K

fM1,up [MeV-3]=10-7 e -2E[MeV]

Brown & Larsen (2014)



(n,γ) rate ratio : <σ>(M1 upbend) / <σ>(No M1 upbend) at T=109K

E1 & M1 from D1M+QRPA 
fM1,up [MeV-3]=10-7 e -2E[MeV]



ACl(p,γ)A+1Ar reaction rateD1M+QRPA E1 strength in Ar isotopes

γ-ray strength function for the n-deficient nuclei 
Pygmy Dipole Resonance



γ-ray strength function for the n-deficient nuclei 
Pygmy dipole resonance and M1 upbend

ACl(p,γ)A+1Ar reaction rateD1M+QRPA+upbend strength in Ar isotopes



SNIa – W7

Impact on the p-process nucleosynthesis

SNII – 25Mo

NS 
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Impact on the r-process nucleosynthesis in SNII 

quasi-static layer

Proto-neutron 
star

(neutrinosphere)

Region heated by
neutrinos
n + νe --> p + e-
p + νe --> n + e + 
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Region cooled by
neutrinos
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who knows… 
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ν-driven wind : S=195; Ye=0.47; dM/dt=6 10-6Mo/s; fw=1



Skyrme- & Gogny-HFB+QRPA, as well as Relativistic HB+QRPA 
models are now available to describe

•  E1 and M1 components 
•  large number of nuclei 
•  spherical as well as deformed nuclei

and have shown their capacity to predict γ-ray strength
à Can be used for nuclear applications after renormalisation !
à Affect the cross section and astrophysical rates for exotic nuclei
à May affect the r-process nucleosynthesis (in SNII)

Future work will require
-  to include T-effect to describe the de-excitation strength

•  Violation of the Brink-Axel hypothesis (E1 strength at εγ --> 0)
•  Low-energy upbend to be described microscopically

-  to go beyond QRPA
•  Coupling between quasi-particle states and phonons
•  Configurations more complex than 1p-1h excitations

Conclusions


