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Hauser-Feshbach model for radiative neutron capture reactions
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The E1 strength function

 Standard Lorentzian (E,, I';, 0,)

e Lorentzian with E-dependent width (e.g McCullagh et al.

1981) =l

* Generalized Lorentzian with 7- and E-dep. width (e.g Kopecky & Uhl 1990)

The E- and T-dependent width 1s essentially
derived from the theory of Fermi liquids
(e.g Kadmenski et al. 1983) and also

F(L) (MeV ™)

I'= —(E2 +4J‘L’2T2)

EOZ/ l 107

decay of p-h states into collisions between 1070 §

more complex states quasi-particles

10°
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suggested by experimental ARC data 107
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At the basis of GLO, EGLO, MLO, SMLO, Hybrid, ... modelslo- 0
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Kopecky & Uhl (1990)



Mean Field + QRPA y-ray strength function

Large-scale E1 Mean-Field + QRPA calculations

Skyrme-HFB + QRPA

Gogny-HFB + QRPA

RMF +QRPA

QRPA calculations can accurately reproduce experimental data,

provided empirical corrections are made, i.e.
* Empirical damping of collective motions = broadening
* Empirical Energy shift (beyond 1p-1h excitations and

phonon couplings)

* Empirical deformation effects for spherical calculations

Recent large-scale Gogny-HFB + QRPA calculations:
Consistent axially deformed calculation

for 1470 e-e nuclel with 8 <7 < 98
(interpolation for ~ 4000 odd-A & odd-odd nuclei)




Gogny-HFB + QRPA E1 strength function

Péru, Martini, Hilaire et al. (2016)

axially-symmetric deformed QRPA estimate of the E1-strength based on

the D1M Gogny force
32 A IR AR 7N R A KA AR 1 SO EEARRERE AR R
_ gg ;(a) Spherlcal (1 peak) E( Deformed (lowest peak) ( [ Deformed (hlghest peak)
S 280 + - E
S L Ll
550 DIM+QPRA  ZFau ELI E
20, & ETTI ER T Y E
Z 18- 'NIH-, EE = e E
216 "Ny, Y e Ed " . .y "
O 145 Exp - - - -
il il h* =4 -
0 50 100 150 200 50 100 150 200 50 100 150 200
Mass number A Mass number A Mass number A
6 S
—>  Energy shift at GDR centroid energy of ~-2.5MeV 3} A=A((D)

with respect to experiment to take 2p-2h and :
phonon coupling into account

A [MeV]

Empirical damping of the collective motions : each
strength 1s folded by a Lorentzian function (I'~2.5 MeV) ° * © 25> » 2

All details given in S. Hilaire talk (Wednesday 10am)



[mb/MeV]

1

f
E

[mb/MeV]

f
El

[mb/MeV]

1

f
E

[mb/MeV]

1

f
E

25

20

35

30

25

20

Comparison with experimental (RIPL3)
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HEFB + QRPA strength

Tested on recent (y,n) data from Utsunomiya et al.

0 0- 4-100 ; ; ;
80G e, 90-967p 94-100\ [ 105-108pq 116-124Gp 139] 5 141py 143-148N(
144-154G ) 181y 186Vy, 187Re. 188Q)yg, 206-208P,

With additional constraints from the reverse experimentally known
(n,y) cross sections (though NLD-dependent)

(cf y-ray strength method; Utsunomiya et al.)
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Sm(n,y) cross sections on the basis of the D1M + QRPA strength
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WHAT ABOUT THE M1 STRENGTH ?



Gogny-HFB + QRPA M1 strength function

Axially-symmetric deformed QRPA estimate of the M1-strength
based on the DIM Gogny force: same normalisation as for the E£1
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Comparison with experimental data

¥ N

Low-energy (2.4-3.7 MeV) M1 strength in the rare-earth region

Centroid energy Integrated strength
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Deformation dependence of the scissors mode

Total strength below 4.5 MeV
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106pd & 233Th strength function : E1 & M1 components

Comparison with ARC and Oslo data
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New evaluation of ARC data for 48 nuclei (Kopecky 2017)
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New evaluation of ARC data for 48 nuclei (Kopecky 2017)
E1/M]1 ratio: stringent test for y-ray strength models
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D1M+QRPA underestimate of the M1 strength by ~30%



What about exotic nuclei away from the
valley of p-stability ?
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M1 strength function in n-rich Sn isotopes
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M1 strength function in n-rich Sn isotopes
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(n,y) MACS with Generalized Lorentzian (GLO) E1 strength
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(n,y) MACS with Generalized Lorentzian (GLO) E/ strength
compared with
QRPA calculations: Skyrme-HFB, RMF and Gogny-HFB
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Impact of the DIM+QRPA M1 strength on (n,y) rates at 7=10°K

1 ~ 4700 nucle1 with 8 <7 <92
100 .
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M1 impact stems from the appearance of the low-lying scissors mode in def. nuclei



Impact of the DIM+QRPA M1 strength on (n,y) rates at 7=10°K
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v-ray strength function for the n-deficient nuclei
Pygmy Dipole Resonance

DIM+QRPA E1 strength in Ar isotopes ACl(p,y)A*1 Ar reaction rate
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Impact of a possible low-energy
M1 upbend



The low-energy upbend structure observed experimentally in Oslo

particle—y coincidence in the (*He,ary) & (*He,’He’ y) reactions

» Upbend observed for 4#4Sc, 201V, 36-57Fe,
F Mo 3-74Ge, 93-%SMo, Sm but not (yet) for Sn,
f ' Dy, Eror Yb
The M1 character of the upbend seems to be
confirmed by shell model calculations (though
an E1 character cannot be excluded yet)
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Impact of an low-energy M1 upbend on the (n,y) reaction rate

(n,y) rate ratio : <o>(M1 upbend) / <o>(No M1 upbend) at T=10°K
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(n,y) rate ratio : <o>(M1 upbend) / <o>(No M1 upbend) at T7=10°K
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v-ray strength function for the n-deficient nuclei
Pygmy Dipole Resonance

DIM+QRPA E1 strength in Ar isotopes ACl(p,y)A*! Ar reaction rate
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v-ray strength function for the n-deficient nuclei
Pygmy dipole resonance and M1 upbend

D1M+QRPA+upbend strength in Ar isotopes ACl(p,y)A*!Ar reaction rate
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Impact on the p-process nucleosynthesis
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Mass fraction

Impact on the r-process nucleosynthesis in SNII
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Conclusions

Skyrme- & Gogny-HFB+QRPA, as well as Relativistic HB+QRPA
models are now available to describe
 E1 and M1 components
* large number of nuclei
* spherical as well as deformed nuclei
and have shown their capacity to predict y-ray strength
—> Can be used for nuclear applications after renormalisation !
—> Affect the cross section and astrophysical rates for exotic nuclei
—> May affect the r-process nucleosynthesis (in SNII)
Future work will require
- to include T-effect to describe the de-excitation strength
* Violation of the Brink-Axel hypothesis (E1 strength at &, --> 0)

* Low-energy upbend to be described microscopically
- to go beyond QRPA

* Coupling between quasi-particle states and phonons

* Configurations more complex than 1p-1h excitations



