

Studies of Spin Cutoff Parameters for Platinum Isotopes

S. M. Grimes
Ohio University

6TH Workshop on Nuclear Level Density and
Gamma Strength, Oslo, May 8-12, 2017

Bethe Parameterization

- Bethe introduced the spin cutoff (σ)
- $\sigma = \langle J_z^2 \rangle^{1/2}$
- $\rho(J) = \frac{N(J+\frac{1}{2})}{\sqrt{2\pi}\sigma^3} e^{-J(J+1)/2\sigma^2}$
- Affects angular distributions in compound nuclear reactions.
- Affects isomeric ratios
- Needed to convert s-wave neutron resonance count to level density (all J) at neutron binding energy

- Recent paper has calculated σ for nuclei with $20 \leq A \leq 240$ (S. M. Grimes PRC **94**, 014308)
- Used BCS model with statistical mechanics
- Used single particle energies from:
 - S. G. Nilsson, Mat. Fys. Medd. K. Dansk. Vid. Sel. **29**, 16 (1955)
 - P. A. Seeger and R. G. Perisho, LA-3751, Los Alamos Report (1967).
 - P. A. Seeger and W. M. Howard, Nucl. Phys. A238, 491 (1975).

Results

- The value of σ was the rigid body value for $10 \leq u \leq 20 \text{ MeV}$ for all A .
- The value of σ was $\approx \frac{1}{3}$ of rigid body at about 3-4 MeV.
- After pairing disappears ($\approx 5 \text{ MeV}$), shell effects are found.

In some regions σ is above rigid body value for $6 \leq u \leq 10 \text{ MeV}$

Atomic Number	Behavior of σ^2
$A \sim 30$	Below Rigid Rotor
$A \sim 45$	Above Rigid Rotor
$A \sim 65$	Below Rigid Rotor
$A \sim 95$	Above Rigid Rotor
$A \sim 200$	Below Rigid Rotor

- Calculations also suggest $\pm 15\%$ deviations of σ from rigid body for excitation of 6-10 MeV in some mass regions.
- If σ changes by $\sim 15\%$, σ^2 changes by $\sim 30\%$.

Measurements of σ

- Measurement of angular distributions of (α, α') , (α, p) , (α, n) reactions.
- Most measurements for $45 \leq A \leq 65$.
- Measurements confirm that σ at $A \sim 50$ is larger than σ at $A \sim 60$ for 6 – 9 MeV.

Related Issues

- Is $\rho_+(u)$ equal to $\rho_-(u)$ at the neutron binding energy?
- Is $\sigma_+(u)$ equal to $\sigma_-(u)$ at the neutron binding energy?

σ^2 Sensitivity to Orbit

J	Occupancy					
	1	2	3	4	5	6
$1/2$	0.25	0.0				
$3/2$	1.25	1.67	1.25	0.0		
$5/2$	2.92	4.67	5.26	2.92	0.0	
$7/2$	3.25	9.00	11.25	12.0	11.25	0.0
$9/2$	8.25	11.0	19.25	22.0	22.92	22.0

Placement of large J orbital in energy is crucial for the calculation of σ .

Note that 4 particles in the $J = 9/2$ orbital produces a much larger σ^2 than 4 particles in the $J = 7/2$ or 4 particles spread over $J = 3/2$ and $J = 1/2$.

Two Approaches to Calculations

- Statistical Mechanics
 - L.G. Moretto, Nucl. Phys. A182, 64, (1974).
 - This includes BCS.
- Odometer Method
 - Does not have BCS but avoids errors in the parity ratio caused by averaging in the statistical mechanics approach.
 - The value of σ^2 can be calculated separately for the positive and negative parity states.

Calculation Details

- Energy range $0 \leq u \leq 20$ MeV
- The calculations at 7.5 MeV were compared for ^{194}Pt , ^{196}Pt and ^{198}Pt .
- Calculations based on single particle energies from:
 - Nilsson
 - Seeger-Perisho
 - Single particles from a Wood-Saxon potential with $R=1.25A^{1/3}$, $V=-50$, $W=0.8$, and $V_{so}=6.2$ and $a=0.65$.
 - S. Goriely et al., PRC **78**, 064307 (2008)

Comparison of σ^2/σ_{rb}^2 at 7.5 MeV

Single Particles Source	Isotope		
	^{194}Pt	^{196}Pt	^{198}Pt
Nilsson	1.07	1.02	1.04
Seeger-Perisho	0.94	0.92	0.97
Seeger-Howard	0.87	0.89	0.92
Potential	0.90	0.89	0.94
Goriely	0.85	0.88	0.95

- The five calculations range over 15%.
- The results trend to 0.9 σ_{rb}^2
- The calculations do not show sharp oscillations.
- Tentative indication that ^{194}Pt and ^{196}Pt have spin cutoffs slightly smaller than ^{198}Pt .

Results in other regions

- For $A \sim 30$ there are indication that σ^2/σ_{rb}^2 is less than $A \sim 22$ or $A \sim 38$.
- The σ_+^2 and σ_-^2 are equal to within 5% as are ρ_+ and ρ_- at 7.5 MeV for the platinum examples.
- For $A \sim 30$, ρ_+ and ρ_- differ by $\sim 15\%$ at 7.5 MeV, σ_+^2 and σ_-^2 vary by $\sim 20\%$ at 7.5 MeV.

Results in Other Regions (cont.)

- For $A \sim 30$ the σ and the ρ_+ to ρ_- ratio may change off the line of stability.
- ^{24}Mg has a σ^2/σ_{rb}^2 of 1.35 at 7.5 MeV.
- ^{32}S has a σ^2/σ_{rb}^2 of 0.78 at 7.5 MeV.

Summary

- Future work
 - Look at sensitivity for nearby nuclei.
 - Look at spin cutoff behavior for deformed nuclei.
 - Look at σ , ρ_+/ρ_- and σ_+/σ_- off the line of stability near $A \sim 30$ and $A \sim 50$.
 - More measurements of the spin cutoff parameter are needed.