

The Radiative Width of The Hoyle State From Cascading γ -Ray Measurement

T. Kibédi¹, B. Alshahrani^{1,2} A.E. Sruhbery¹, M. Guttormsen³, A. Görzen³,
S. Siem³, A.C. Larsen³, F. Giacoppo³, A. Morales Lopez⁴, E. Sahin³,
G.M. Tveten³, F.L. Bello Garrote³, L. Crespo Campo³, T.K. Eriksen³,
M. Klintefjord³, S. Maharramova³, T.G. Tornyi^{1,3,5} and T. Renstrøm³

¹ Dep. of Nuclear Physics, Australian National University, Canberra, Australia

² Dep. of Physics, King Khaled University, Abha, Kingdom of Saudi Arabia

³ Dep. of Physics, University of Oslo, Oslo, Norway

⁴ Università degli studi e INFN, Milano, Italy

⁵ Institute of Nuclear Research, MTA ATOMKI, Debrecen, Hungary

The excited state of the ^{12}C nucleus known as the “Hoyle state”, constitutes one of the most interesting, difficult and important challenges in nuclear physics, as it plays a key role in the production of carbon via fusion of three alpha particles in red giant stars. In this paper we report on a new measurement of the Γ_γ/Γ ratio of the 7.654 MeV 0^+ state, which together with the world data on $\Gamma_\pi(E0)/\Gamma$ and $\Gamma_\pi(E0)$ was used to determine the radiative width, Γ_{rad} , of the Hoyle state.

The experiment was carried out at the Oslo Cyclotron Laboratory. The Hoyle state was populated using the $^{12}\text{C}(p, p')^{12}\text{C}$ reaction at 10.7 MeV energy using a 180 $\mu\text{g}/\text{cm}^2$ thick natural carbon target. Cascade gamma-rays of E2 multipolarity and at energies of 3.215 MeV and 4.439 MeV were observed using the CACTUS array [1], consisting of twenty-six 5” by 5” NaI detectors. Scattered protons in singles and in coincidence with γ -ray cascades were recorded with the Silicon Ring (SiRi) array [2] consisting eight DE-E telescopes, where the front detector is segmented into eight strips. A total of 2.56×10^8 singles proton events leading to the excitation of the Hoyle state were observed in an 11 day run. The number of $p\gamma\gamma$ events involving the 3.215 MeV and 4.439 MeV γ -rays was 529(23). The observed angular correlation of the events is consistent with a 0-2-0 cascade.

This talk will focus on the analysis of the data and will compare our results with the only previous measurement performed by Obst and Braithwaite more than 35 years ago [3]. This study complements our project to determine the radiative width from pair conversion measurement of the E0 and E2 transitions de-exciting the Hoyle state [4].

We thank the Oslo Cyclotron laboratory for the support and hospitality during the experiments. We also thank Hilde-Therese Nyhus (University of Oslo) for her help. TK and AES would like to acknowledge the financial support of the Australian Research Council, grant number DP140102986.

[1] M. Guttormsen *et al.*, Phys. Scr. **T32** (1990) 54.

[2] M. Guttormsen *et al.*, Nucl. Instr. Met. Phys. Res. **A648** (2011) 168.

[3] A.W. Obst and W.J. Braithwaite, Phys. Rev. **C13** (1976) 203.

[4] T.K. Eriksen, *et al.*, (in this abstract booklet)

