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Monte-Carlo DSAM
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Feeding Time

t
feed

( E
i  

, E
f  
)

Been analyzing strength 
with gamma spectra: P(E�)

Now can analyze strength
with lifetimes: ΔE�(Θ)



  

Nuclear Testing Grounds

Gamma Strength FunctionsLevel Density Models
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4500 lines FORTRAN → ~700-950 lines C++ / ROOT
Annotated well
Input energy, spin, parity distribution
Same built nucleus energies, contents, widths
Output many observables, including time

Simulation

Used DICEBOX1

But had trouble extending 
to different initial E,J,π
Suited to do (n,g)New level

energies, 
contents, 
widths 

1F. Bečvář, NIM A 417, 2-3 (1998)



  

Simple Nuclear Parameters:

Initial Excitations: 
E = Gaussian, 11 +/- 0.2 MeV
J = Poisson, mean 2.2 ћ
P = Uniform +/-

Decay:
E1 = GLO; M1,E2 = std Lorentzian

diCe.C
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Simple Nuclear Parameters:

Initial Excitations: 
E = Gaussian, 11 +/- 0.2 MeV
J = Poisson, mean 2.2 ћ
P = Uniform +/-

Decay:
E1 = GLO; M1,E2 = std Lorentzian

Discrete
From RIPL

Built

diCe.C

co
un

ts

co
un

ts
1+2 step

3+4+... step

Fit = 0.88 Exp(-t / 1.56) 
+ 0.12 Exp(-t / 17.7)



  

Starting Energy

2.658 MeV 2+

Lower E
x,i

Slower: ρ(E
f
), E

g
3

Higher population: fewer ways to pass

MeV



  

Initial Spin Dist

Poisson 3.6 ћPoisson 2.2 ћ

Still benchmarking
and tuning the feeding times

2T. Døssig, 6th Workshop on Nuclear Level 
Density and Gamma Strength, Oslo 2017
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● I.Y. Lee, A.O. Macchiavelli, C.M. Campbell, M. 
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M.D. Jones  and the rest of the GRETINA team

● L.A. Bernstein, Karl van Bibber



  

Benchmark In Progress

diCe might seem slower but:
1. DICEBOX is saving initial state widths
2. diCe presumes widths will need recalc every initial state
3. DICEBOX slows to same speed with this presumption

Initial state: 186Re, 6.0 MeV, 1+

diCe DICEBOX

Population of low lying levels Different random # methods
Magnitudes of the same order
Porter-Thomas Fluctuations of 

same order: PT:  = 1 �
Violent dist

Initial state: 56Fe, 7.0 MeV, 3+



  

To Do

● Intricate strength and level density models
● Odd A nuclei
● Internal conversion
● More benchmarking


