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Phoswich Wall:
particles -
ID, E, 8, @

ions -
stop in target
E . KE, 0, ¢ from p kinematics



Doppler Shift Review:
=E (1+vcos®/c)

3, observed ¥, source

Recoil, ¥ antiparallel Recoil, 8 parallel
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Doppler Shift Review:
1+vcos®/c)-= Emission

¥, observed 3, source(

Depends on
lifetime
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Monte-Carlo DSAM
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Counts in with E
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Counts in with E
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Counts in with E
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2113

Counts in with E
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Feeding Time

Been analyzing strength
with gamma spectra: P(Ey)
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Simulation
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Simulation
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Used DICEBOX!

But had trouble extending
to different initial E,J, Tt
Suited to do (n,g)

54321001"2°34°57
Tt

IF. Be¢vér, NIM A 417, 2-3 (1998)



Simulation
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7fs =h (z r) energies,
i contents, ———m
widths
Final product:
2.7 MeV 2* Feeding time distributions
31 fs (E )
feed f
0.85 MeV 2* E
0+ 400 bins
J-5 87 fs

4500 lines FORTRAN - ~700-950 lines C++ / ROOT
Annotated well

Input energy, spin, parity distribution

Same built nucleus energies, contents, widths

Output many observables, including time

Used DICEBOX!

But had trouble extending
to different initial E,J, Tt
Suited to do (n,g)

54321001"2°34°57
Tt

IF. Be¢vér, NIM A 417, 2-3 (1998)



Simple Nuclear Parameters: dICe C

tot _ l By — By
pr (Ez) = TeXp( T )
P(n)=1/2

2J+1 (J + 3)?
Rp(Ez,J) = 552 P | T 755

Initial Excitations:

E = Gaussian, 11 +/- 0.2 MeV
J = Poisson, mean 2.2 h

P = Uniform +/-

Decay:
E1l = GLO; M1,E2 = std Lorentzian



Simple Nuclear Parameters:

diCe.C.

1 E,—Ejy

tot E - x
PT ( x) TeXp( T ) o
Plm)=1/2 ~
R((QE By 2] (J + 1) 2

F(Ez, J) = 202 exp 202 EB
Initial Excitations: g 6
E = Gaussian, 11 +/- 0.2 MeV 3 .
J = Poisson, mean 2.2 h E

P = Uniform +/- ,
Decay:

E1 = GLO; M1,E2 = std Lorentzian °

Population of Levels: Exi= 11.00 MeV
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Simple Nuclear Parameters:
1 E FEy

tot E T €

PT ( :fc) TeXp(_T )

P(n)=1/2 o1
+

Rr(Ex,J) = 552

Initial Excitations:

E = Gaussian, 11 +/- 0.2 MeV

J = Poisson, mean 2.2 h

P = Uniform +/-

exp

202

Decay:
E1l = GLO; M1,E2 = std Lorentzian

Multiplicity: E = 11.00 MeV

(J+3)

Multiplicity

2

1

0 I I | | I I | | 111 | L1 1 1 | 11 L1 | I |

0 5 10 15 20
Discrete Level Number

25

30

102

10

1

counts

diCe.C.

Level Energy (MeV)

Population of Levels: Exi= 11.00 MeV

HW\M\

10

|

Jl

| w
I ‘ | \Hl E’

Y

bl
5

Gamma Spectrum: Exi =11.00 MeV

10

10



Feeding Time (fs)

Simple Nuclear Parameters: d | Ce ] C »

Population of Levels: Exi= 11.00 MeV

1 E,—-F
PP (Ey) = TGXP(TO)
P(n)

Rr(Ex,J) =

10
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E1 = GLO; M1,E2 = std Lorentzian °
Feeding Levels: EXi =11.00 MeV
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Feeding Time (fs)
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Simple Nuclear Parameters: d | Ce ] C »

1 E, — F
PR (EL) = exp(——2

T )

Initial Excitations:

E = Gaussian, 11 +/- 0.2 MeV
J = Poisson, mean 2.2 h

P = Uniform +/-

Decay:
E1l = GLO; M1,E2 = std Lorentzian
Feeding Levels: EXi =11.00 MeV
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Feeding Time (fs)

Initial Spin Dist

2T. Dgssig, 6" Workshop on Nuclear Level
Density and Gamma Strength, Oslo 2017

Still benchmarking
and tuning the feeding times
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Benchmark In Progress

Initial state: *¢Fe, 7.0 MeV, 3+
Initial state: **Re, 6.0 MeV, 1+

Population of low lying levels
diCe DICEBOX

diCe might seem slower but:

1. DICEBOX is saving initial state widths

2. diCe presumes widths will need recalc every initial state
3. DICEBOX slows to same speed with this presumption

Different random # methods

Magnitudes of the same order

Porter-Thomas Fluctuations of
same order: pT.., -1

Violent dist



To Do

Intricate strength and level density models
Odd A nuclel

Internal conversion

More benchmarking



