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« Results
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Experiment - DANCE @ LANSCE

 Moderated W target gives “white”
neutron spectrum, ~14 n’s/proton

« DANCE is on a 20 m flight path / ~1
cm @ beam after collimation

e repetition rate 20 Hz

* pulse width = 125 ns : _W {
 DANCE consists of 160 BaF, crystals , ~

see also talks of J. Ullmann, O. Roig, and N. Bazhazhina
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Experiment

« Radiative neutron capture measured for sub keV region using Detector
for Advanced Neutron Capture Experiments (DANCE)

with aim to study RSF (and perform resonance spin assignment)
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OF spectra

Spectra can be obtained from several neutron resonances
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Spectra of our interest
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Sum-energy spectra
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Spectra obtained for “many” well-isolated resonances
161Dy(n,y): 25x Jr = 2%, 22x J* = 3*
163Dy(n,y): 14x Jr =2, 26xJ* =3

At least some checks of fluctuation properties become possible
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“Average” MSC spectra

Distribution of resonances - mean and variance — can be obtained by
different approaches (simple averaging, weighted averaging, estimate of
distribution parameters from Maximum-likelihood method)
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Data processing

« Experimental spectra come from a complicated interplay between
radiative strength functions (RSFs) and level density (LD)

« Complicated detector response to each cascade

— Comparison of predictions based on statistical model simulations
with experimental counterparts

« Cascades generated using statistical model of y decay (using
DICEBOX code)

« Detector response (GEANT4) applied to each y cascade

Oslo, May 11, 2017



Simulation of y cascades - DICEBOX

Main assumptions:

For nuclear levels below certain “critical energy” spin, parity and decay
properties are known from experiments

Energies, spins and parities of the remaining levels are assumed to be
a random discretization of an a priori known level-density formula

A partial radiation width I', s 1), characterizing a decay of a level i to
a level f, is a random realization of a chi-square-distributed quantity
the expectation value of which is equal to

f (XL)(EY) Ey2L+1/p(Ei)’
where fXb) and p are also a priori known
Selection rules governing the y decay are fully observed

Any pair of partial radiation widths T’ *1) is statistically uncorrelated
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DICEBOX — Statistical decay simulations

Modelling of the decay:

. “nuclear realization” Deterministic character of random
(10 levels = 1012 T, ) number generators is exploited
“precursors” are introduced

. comparable quantities Level Excitation
(shapes of spectra, multiplicity, ~ Number Precursor  ENergy

lo . N

population of low-lying levels,

shapes of TSC spektra) are _{,f : CS
Jintegral® quantities ] —
. fluctuations originating from 0 — = Go. Ea
nuclear realizations cannot be |
suppressed . S, 6, Ea.
| 0s, 7T B
Oz — Y. . ——— =
N \/
Outcomes from modelling are L | v u
compared with experimental data o, \/ \/ AV 0
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Main features of DICEBOX - fluctuations

» Infinite number of artificial nuclei (nuclear realizations) can be
obtained for the same set of level density and RSFs models —
nuclear realizations differ in exact number of levels and
Intensities of transitions between each pair of them
= leads to different predictions from different nuclear
realizations

 DICEBOX allows us to treat predictions from different nuclear
realizations, i.e. expected fluctuations

« The size of fluctuations depends on the (observable) quantity
and nucleus

« Majority of results (sum-energy and MSC spectra) insensitive to
absolute values of RSFs but only to energy dependence of
RSFs and their “composition” (E1, M1)
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Analysis of Dy data | Dioeeeeter o
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Results - Dy

« Two different spins
 Different parity of resonances (1%2Dy x 164Dy)

« Validity of many models can be rejected
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Results - Dy

 Resonance near 3 MeV has to be postulated also for primary
transitions and has to be of M1 character (scissors mode)

 E1 character of the resonance structure not consistent with data;
Esy = 2.8-3.0 MeV, Ty, = 1.0-1.4 MeV
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Results - Dy e ™
i - Dyw53 T |
s 0.5 Sm .
A low-energy RSF enhancement U —¢ ”- --
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Results - Dy

Good agreement obtained
with models “similar but not
exactly the same” as Oslo
models

It is difficult to reproduce
both isotopes with exactly
the same RSF model —
especially taking into
account total radiation width

Intensity (arb. units)
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Expected fluctuations

H 1] ” H . : : S +E
Different “sources” of fluctuations in simulations

In a real nucleus, the fluctuations come only from
Intensities of primary transitions — all levels below
neutron resonances and secondary intensities are fixed

Unfortunately, we do not know which realization of the
decay scheme is realized in nature

So far, simulations made with different level schemes in
each simulated artificial nucleus — CPU time reasonable

Is such an approach correct?

For Dy nuclei we have made for the first time (time-
consuming) tests for fixed levels below capturing state
and intensities of secondary transitions (for two RSF+LD
combinations)

Oslo, May 11, 2017

GS




Findings related to widths of distribution

Results from simulations

« For chosen combination of RSFs and LD, fluctuations due to primary
transitions do not strongly depend on actual choice of the level
scheme — we can reasonably well separate fluctuations due to (i)
“‘unknown level scheme™ and (ii) “fluctuation of primary intensities”

« For all bins via region of “high level density” the fluctuations of type (ii)

are higher than that of type (i), usually dominantly — perfect
justification of the comparison used in all previous RE nuclei

Oslo, May 11, 2017
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Findings related to widths of distribution

Results from simulations

« For chosen combination of RSFs and LD, fluctuations due to primary
transitions do not strongly depend on actual choice of the level
scheme — we can reasonably well separate fluctuations due to (i)
“‘unknown level scheme™ and (ii) “fluctuation of primary intensities”

« For all bins the fluctuation of type (ii) are higher than that of type (i),
usually dominantly — perfect justification of the comparison used in all
previous nuclei

« Results can strongly depend on the isotope (mass, LD)
but should be similar in nuclei in the same mass range (similar LD)
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Findings related to widths of distribution

Results from simulations

« For chosen combination of RSFs and LD, fluctuations due to primary
transitions do not strongly depend on actual choice of the level
scheme — we can reasonably well separate fluctuations due to (i)
“‘unknown level scheme™ and (ii) “fluctuation of primary intensities”

« For all bins the fluctuation of type (ii) are higher than that of type (i),
usually dominantly — perfect justification of the comparison used in all
previous nuclei

« Results can strongly depend on the isotope (mass, LD)
but should be similar in nuclei in the same mass range (similar LD)

Comparison between experiment and simulations
« Results are rather puzzling

Oslo, May 11, 2017



Comparison of distributions
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168Er — very preliminary results
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168Er results — MSC spectra

« MSC spectra are well reproduced with similar model combinations
as Dy (and Gd) spectra, i.e. with the scissors mode, BSFG LD

model, ...
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168Er results — Sum-energy spectra

spectra for 20 ns coincidence window
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168Er results — Sum-energy spectra

spectra for 20 ns coincidence window ... asurprise
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168Er results — Sum-energy spectra

spectra for 20 ns coincidence window
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Summary

* Problems with fluctuations in Dy
* Problems with population of the isomeric state in 168Er

problems with populations of isomeric states observed also in
other deformed nuclei 177Lu, 23U @ DANCE,

180Hf isotope from measurement in unresolved resonance
region at Karlsruhe - K. wisshak et al., PRC73, 045807 (2006)

Possible explanation?

We can only speculate
* influence of level density (spin cut-off)
 influence of quantum number K in these nuclei

Oslo, May 11, 2017



Thank you very much
for your attention!
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