Spin Distribution of Excited Nuclear States in $^{nat}Fe(p,αn)$

Andrew S. Voyles, M.S. Basunia, L.A. Bernstein, J.W. Engle, E.F. Matthews, A. Springer

08 May 2017

6th Workshop on Nuclear Level Density and Gamma Strength
$^{51,52}\text{Mn}$ - Motivation

- Emerging medical radionuclides
 - ^{51}Mn ($t_{1/2} = 46$ min, 97% β^+) – short-lived PET tracer for metabolic studies
 - ^{52}Mn ($t_{1/2} = 5.6$ d, 29% β^+) – long-lived PET tracer for neuron tracking, immune studies

 Preparation and in vivo characterization of $^{51}\text{MnCl}_2$ as PET tracer of Ca^{2+} channel-mediated transport

 Stephen A. Graves, Reinier Hernandez, Hector F. Valdivinos, Paul A. Ellison, Jonathan W. Engle
 Todd E. Barnhart, Weibo Cai, Robert J. Nickles

 - Manganese has well-established biochemistry and uptake via DOTA-based chelation

 Almost no Fe(p,x) XS measurements exist – can use these to probe spin physics in the $A\approx50$ region
Methodology
Two overlapping stacks:
\[E_p = 55 \rightarrow 21 \text{ MeV}, \ 25 \rightarrow 11 \text{ MeV} \]
- 25 μm-thin ^{nat}Fe, ^{nat}Cu, ^{nat}Ti foils in 0.1” Al frames

- Dosimetry: IAEA charged particle beam monitor reactions:
 - $^{nat}Ti(p,x)^{48}V$
 - $^{nat}Cu(p,x)^{62,63,65}Zn$

nds.iaea.org/medical/monitor_reactions.html
Fe\(_{(p,x)}\)

Cu\(_{(p,x)}\)

Ti\(_{(p,x)}\)
52mMn (2+)/52gMn (6+) vs. Energy for 56Fe(p,αn)
TALYS Level Density Models 1-6 (default spin cut-off)

Preliminary

CT + FG
BSFG
GSFM
Microscopic (Goriely)
Microscopic (Hilaire)
T-dep HFB
This Work

Berkeley
UNIVERSITY OF CALIFORNIA
08 May 2017 | Oslo Nuclear Level Density Workshop
Results consistent with $R \approx 1$ at high energy.

At low energy, results are ambiguous due to energy straggling.
Measurements @ LANL – Nb(p,x)

- $^{\text{nat}}\text{Nb(p,4n)}^{90}\text{Mo}$ is a high-priority objective as a new proton beam dosimetry standard for $E_p \approx 50 – 100$ MeV
Measurements @ LANL – Nb(p,x)
Measurements @ LANL – Nb(p,x)

• LBNL: 5 – 55 MeV / A, LANL: 45 – 100 MeV p+
• Complementary measurements explore reaction dynamics in different energy regimes, overlap region of 45-55 MeV builds confidence and consistency in results.
Measurements @ LANL – Nb(p,x)

^{87m}Y (9/2+) / ^{87g}Y (1/2-) vs. Energy for 93Nb(p,αp2n)
TALYS Level Density Model CT+FG (default spin cut-off)

This Work
Talys

Preliminary
Summary

- Already completed: Fe(p,x), Zr(d,x), Nb(p,x)
- Upcoming targets: $^{86}\text{Sr}(p,x)^{86}\text{Y}$, $\text{La}(p,x)^{134,135}\text{Ce}$, $^{177}\text{Hf}(n,p)^{177}\text{Lu}$
 - $^{7}\text{Li}(p,n)$ quasi-monoenergetic neutron source development
- Possible future candidates: Access targets previously fielded by β^+-Oslo in the $A\approx50,90$, rare earth regions via (p,xn), (α,xn)
Tusen takk!