

Spin Distribution of Excited Nuclear States in $^{nat}\text{Fe}(p, \alpha n)$

Andrew S. Voyles, M.S. Basunia, L.A. Bernstein,
J.W. Engle, E.F. Matthews, A. Springer

08 May 2017

6th Workshop on Nuclear Level Density and Gamma Strength

Berkeley
UNIVERSITY OF CALIFORNIA

$^{51,52}\text{Mn}$ - Motivation

- Emerging medical radionuclides
 - ^{51}Mn ($t_{1/2} = 46$ min, 97% β^+) – short-lived PET tracer for metabolic studies
 - ^{52}Mn ($t_{1/2} = 5.6$ d, 29% β^+) – long-lived PET tracer for neuron tracking, immune studies

Preparation and *in vivo* characterization of $^{51}\text{MnCl}_2$ as PET tracer of Ca^{2+} channel-mediated transport

Stephen A. Graves¹, Reinier Hernandez¹, Hector F. Valdovinos¹, Paul A. Ellison¹, Jonathan W. Engle^{1*}
Todd E. Barnhart¹, Weibo Cai^{1,2,3}, Robert J. Nickles^{1*}

- Manganese has well-established biochemistry and uptake via DOTA-based chelation

Almost no $\text{Fe}(\text{p},\text{x})$ XS measurements exist – can use these to probe spin physics in the $\text{A} \approx 50$ region

Methodology

88-Inch Cyclotron

Berkeley

UNIVERSITY OF CALIFORNIA

Two overlapping stacks:
 $E_p = 55 \rightarrow 21 \text{ MeV}, 25 \rightarrow 11 \text{ MeV}$

- 25 μm -thin ${}^{\text{nat}}\text{Fe}$, ${}^{\text{nat}}\text{Cu}$, ${}^{\text{nat}}\text{Ti}$ foils in 0.1" Al frames

- Dosimetry: IAEA charged particle beam monitor reactions:
 - ${}^{\text{nat}}\text{Ti}(\text{p},\text{x}){}^{48}\text{V}$
 - ${}^{\text{nat}}\text{Cu}(\text{p},\text{x}){}^{62,63,65}\text{Zn}$

nds.iaea.org/medical/monitor_reactions.html

^{52m}Mn (2+)/ ^{52g}Mn (6+) vs. Energy for $^{56}\text{Fe}(\text{p},\alpha\text{n})$
TALYS Level Density Models 1-6 (default spin cut-off)

^{52m}Mn (2+)/ ^{52g}Mn (6+) vs. Energy for $^{56}\text{Fe}(\text{p},\alpha\text{n})$
TALYS Level Density Model CT + FG

Results consistent with $R \approx 1$ at high energy.

At low energy, results are ambiguous due to energy straggling.

Measurements @ LANL – Nb(p,x)

- $^{nat}\text{Nb}(p,4n)^{90}\text{Mo}$ is a high-priority objective as a new proton beam dosimetry standard for $E_p \approx 50 - 100$ MeV

Measurements @ LANL – Nb(p,x)

Measurements @ LANL – Nb(p,x)

- LBNL: 5 – 55 MeV / A, LANL: 45 – 100 MeV p⁺
- Complementary measurements explore reaction dynamics in different energy regimes, overlap region of 45-55 MeV builds confidence and consistency in results.

Measurements @ LANL – Nb(p,x)

Summary

Demonstrated ability to measure $R_{\text{spin-cut}}$ in excitation function studies for emerging medical radioisotopes

- Already completed: Fe(p,x), Zr(d,x), Nb(p,x)
- Upcoming targets: $^{86}\text{Sr}(p,x)^{86}\text{Y}$, $\text{La}(p,x)^{134,135}\text{Ce}$, $^{177}\text{Hf}(n,p)^{177}\text{Lu}$
 - $^7\text{Li}(p,n)$ quasi-monoenergetic neutron source development
- Possible future candidates: Access targets previously fielded by β^+ -Oslo in the $A \approx 50,90$, rare earth regions via (p,xn), (α ,xn)

A photograph of the Berkeley skyline at sunset. The sky is a vibrant orange and yellow. In the foreground, the green tops of trees are visible. To the right stands the Campanile, a tall, light-colored stone bell tower. In the background, the San Francisco Bay and the Golden Gate Bridge are visible across the water. A large, stylized white text 'Tusen takk!' is overlaid on the image, positioned to the left of the tower. In the top right corner, there is a graphic of a tree with a white, geometric, tessellated pattern for its canopy, resembling a fractal or a complex geometric shape.

Tusen takk!

Berkeley
UNIVERSITY OF CALIFORNIA