Melt processing of high-T_c Nd–Ba–Cu–O superconductors in air

H. Kojo a, S.I. Yoo a,b, M. Murakami $^a, *$

a Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-16-25, Shibaura, Minato-ku, Tokyo 105, Japan

b Railway Technical Research Institute, 2-3-38 Hikari-cho, Kokubunji-shi, Tokyo 185, Japan

Received 16 May 1997; accepted 30 June 1997

Abstract

We have succeeded in fabricating Nd–Ba–Cu–O bulk superconductors, which exhibit high T_c and a sharp superconducting transition, by the melt process in air without additional high temperature annealing in a reduced oxygen atmosphere. The key to this achievement is the use of Ba-rich Nd$_{4-2x}$Ba$_{2+2x}$Cu$_{2-y}$O$_{10-y}$ as a precursor. Fabricated bulk samples exhibit onset T_c values of 94–95 K and the secondary peak effect in the M–H loop like the case of Nd–Ba–Cu–O superconductors produced by melt processing in a reduced oxygen atmosphere. The peak position and the irreversibility field for the best sample were about 1.2 T and 5 T at 77.3 K, respectively, and the estimated J_c at the peak field was about 2.3×10^4 A cm$^{-2}$.

Keywords: Superconductor; Melt process; Nd–Ba–Cu–O; Critical current density; Solid solution; Phase diagram

1. Introduction

Unlike YBa$_2$Cu$_3$O$_y$, which forms only a stoichiometric compound, large rare earth elements (RE: La, Nd, Sm, Eu and Gd) are known to form a RE$_{1+y}$Ba$_{2-y}$Cu$_3$O$_{7+y}$ solid solution (RE123ss) because the ionic radius of RE$^{3+}$ is close to that of Ba$^{2+}$. The superconducting transition temperature (T_c) is depressed when RE$^{3+}$ substitutes on the Ba$^{2+}$ site, since the carrier concentration is decreased. Owing to the presence of the RE–Ba substitution, REBa$_2$Cu$_3$O$_{7+y}$ (RE123) samples melt-processed in air exhibit low T_c with a broad transition. Such substitution can largely be suppressed by employing low oxygen partial pressure pO_2 during the solidification of the RE123 phase, which is the oxygen-controlled-melt-growth (OCMG) process [1–3].

OCMG-processed RE–Ba–Cu–O (RE: Nd, Sm, Eu, Gd) superconductors exhibit high T_c and a sharp transition. Furthermore, they are very promising for practical applications since the critical current density J_c and the irreversibility field were higher than those of melt-processed Y–Ba–Cu–O. The OCMG process, however, has the disadvantage that pO_2 must be controlled during the process, which adds to the cost and will require a complicated system to seed the crystal for the fabrication of large grain samples. To avoid these problems melt processing in air has greatly been favoured.

Recently, Obradors et al. [4] and Hu et al. [5] have reported that Nd–Ba–Cu–O superconductors melt-processed in air exhibit high T_c of 95–96 K. It should be noticed, however, that in both cases add-
tional Ar annealing at high temperatures above 900°C is indispensable to the achievement of high T_c. We suppose that during such treatment RE-rich phase with depressed T_c will decompose into Nd$_2$Ba$_2$Cu$_2$O$_{10}$ (Nd422) plus the liquid phase, and then the phase with enhanced T_c solidifies from Nd422 and the liquid, leading to the recovery of high T_c.

In the present paper, we show that Nd–Ba–Cu–O superconductors exhibiting T_c of 94–95 K and a sharp transition can be fabricated by the melt process in air without additional high temperature annealing in low pO_2.

2. Experimental

Four batches having different nominal compositions were prepared using precursors of Nd$_{0.9}$Ba$_{2.1}$Cu$_{1.8}$O$_{7-\delta}$, Nd$_{0.9}$Ba$_{2.1}$Cu$_{1.8}$O$_{7-\delta}$, Nd$_{3.6}$Ba$_{2.4}$Cu$_{1.8}$O$_{10-\delta}$ and Nd$_{3.6}$Ba$_{2.4}$Cu$_{1.8}$O$_{10-\delta}$, which were independently prepared by the solid state reaction. Nominal compositions for the samples are shown in Table 1. Chemical compositions of the Nd422 and Nd$_{3.6}$Ba$_{2.4}$Cu$_{1.8}$O$_{10-\delta}$, which were analyzed by inductively coupled plasma (ICP) spectrometry, are also displayed in the table. The results of powder X-ray diffraction (XRD) analyses for the precursor materials suggested that all the precursors were phase-pure at least on the X-ray level except Nd$_{0.9}$Ba$_{2.1}$Cu$_{1.8}$O$_{7-\delta}$ which contained a small amount of BaCuO$_2$ phase. Although the solubility limit of Ba in Nd422ss was reported to be $z = 0.1 - 0.15$ [6,7], an XRD pattern for Nd$_{3.6}$Ba$_{2.4}$Cu$_{1.8}$O$_{10-\delta}$ indicates that a single phase is formed even when $z = 0.2$, suggesting that the solubility limit is higher than the reported values.

Well-mixed precursor powders were uni-axially pressed into pellets of 20 mm diameter, and subjected to cold-isostatic pressing under a pressure of 200 kg/cm2. For the melt growth in air, the samples were placed on yttria-stabilized zirconia plates and ramped to 1120°C in 3 h, held for 30 min, cooled to 1080°C at a rate of 10°C/min, slowly cooled to 1010°C at a rate of 1°C/h, and then furnace cooled.

Melt-grown samples were composed of many textured Nd–Ba–Cu–O grains of 5–10 mm diameter. Small samples with a rectangular cross section of 1.5×2.0 mm2 and 0.5–0.8 mm thickness were cut from textured domains, and then annealed in flowing pure O$_2$ gas at a rate of 300 ml/min with the following temperature schedule: heated to 500°C in 3 h, held for 1 h, cooled to 300°C in 25 h, held for 200 h and finally furnace-cooled.

DC magnetization measurements were performed with a Quantum design MPMS SQUID magnetometer. A zero-field-cooled warming procedure was used for the T_c measurement with the applied field of 10 Oe. The magnetization hysteresis loops were also obtained with the SQUID magnetometer for fields parallel to the c-axis. The J_c was estimated using the extended Bean model [8].

3. Results and discussion

Fig. 1 shows the temperature dependence of magnetization for the samples. The sample D, synthesized using stoichiometric Nd422 powder as the precursor, exhibits onset T_c of 90 K with a broad transition width of 10 K. In contrast, the samples A to C, synthesized using Ba-rich Nd422ss as the precursor, exhibit relatively high onset T_c values of 94–95 K with the transition width of 4–7 K. It is
clear that the T_c and transition were greatly improved when the Ba-rich Nd422ss was used, although the transition is still broad compared to those of OCMG-processed Nd–Ba–Cu–O samples [2,3]. It should also be noted that even batch D shows much-improved superconducting properties compared with the previous result [2,3]. It is probable that the formation of Nd-rich Nd123ss could be suppressed in the present experiment, since we used separately sintered Nd123 and Nd422 powders.

The formation of high-T_c phase in air can be explained in terms of phase compatibility. The composition x of Nd$_{1+y}$Ba$_{2-x}$Cu$_3$O$_{y+4}$, which is solidified through the peritectic reaction of Nd422ss and the liquid phase, is determined by the liquid phase composition which is compatible with the Nd$_{4-z}$Ba$_{2+z}$Cu$_{2-z}$O$_{10-z}$ at just above the peritectic temperature. As shown in Fig. 2, which is the schematic subsolidus NdO$_{1.5}$–BaO–CuO ternary phase diagram in air, the tie line of high-T_c Nd123 phase is connected to the Nd422ss, in which Ba content lies at the solubility limit. Therefore, the composition of the liquid phase which is compatible with high-T_c Nd123 phase should also be compatible with Ba-rich Nd422ss, although the exact number of z could not be determined in the present experiment. It is also probable that the presence of Ba-rich Nd422ss in the liquid will maintain Ba-rich liquid component, which also favours the formation of high-T_c Nd123 with suppressed Nd–Ba substitution.

We confirmed that T_c of 94–95 K could also be obtained using Nd$_{3.3}$Ba$_{2.2}$Cu$_{1.9}$O$_{10-\delta}$ instead of Nd$_{3.6}$Ba$_{2.4}$Cu$_{1.8}$O$_{10-\delta}$, but the transition was broader. This suggests that the excess Ba in the solid solution of $z = 0.1$ is not sufficient to achieve the preferential formation of high-T_c phase. It might also be possible to simply prepare the Ba-rich liquid phase, however, for the melt-textured process, the reaction of the liquid phase with the substrate or the crucible will easily shift the liquid composition toward Ba-poor direction. It is thus concluded that the present success in growing high-T_c Nd123 phase in air is ascribed to the use of Ba-rich solid phase, that is, Ba-rich Nd422ss.

For comparison, the J_c–B curve of a Nd–Ba–Cu–O bulk with 20 mol% excess Nd422, which was OCMG-processed in 1% O_2, is also displayed. While the absolute values of J_c for the samples A to C are still lower than that of OCMG-processed sample, they are much improved compared to the batch D. The peak effect, which is commonly observed in OCMG-processed RE123 superconductors is also observed in batches A to C, suggesting that the field-induced pinning center, which was first proposed by Murakami et al. [9] and later verified as the
clusters of Nd–Ba substituted phase with lower T_c finely dispersed in the Nd123 matrix [10–12], also exists in the samples melt-processed in air.

4. Conclusions

The utilization of Ba-rich Nd$_{4-2x}$Ba$_{2+2x}$Cu$_{2-z}$O$_{10-\delta}$ solid solution (i.e. large z) as the precursor is the key to growing high-T_c phase of Nd$_{1+y}$Ba$_{2-x}$Cu$_{2}O_{7+\delta}$ solid solution with small x ($0.0 < x < 0.1$) in air, which implies that the fabrication process for Nd–Ba–Cu–O superconductors can be much simplified. Further improvement in both T_c and J_c is expected by the optimization of the processing conditions.

Acknowledgements

The authors would like to thank Toshima Co. Ltd for the preparation of sintered powders and DOWA Mining for compositional analysis with ICP. This work was partially supported by NEDO for the R&D Industrial Science and Technology Frontier Program.

References